Unknown

Dataset Information

0

Non-antibiotic Small-Molecule Regulation of DHFR-Based Destabilizing Domains In Vivo.


ABSTRACT: The E. coli dihydrofolate reductase (DHFR) destabilizing domain (DD), which shows promise as a biologic tool and potential gene therapy approach, can be utilized to achieve spatial and temporal control of protein abundance in vivo simply by administration of its stabilizing ligand, the routinely prescribed antibiotic trimethoprim (TMP). However, chronic TMP use drives development of antibiotic resistance (increasing likelihood of subsequent infections) and disrupts the gut microbiota (linked to autoimmune and neurodegenerative diseases), tempering translational excitement of this approach in model systems and for treating human diseases. Herein, we identified a TMP-based, non-antibiotic small molecule, termed 14a (MCC8529), and tested its ability to control multiple DHFR-based reporters and signaling proteins. We found that 14a is non-toxic and can effectively stabilize DHFR DDs expressed in mammalian cells. Furthermore, 14a crosses the blood-retinal barrier and stabilizes DHFR DDs expressed in the mouse eye with kinetics comparable to that of TMP (?6 h). Surprisingly, 14a stabilized a DHFR DD in the liver significantly better than TMP did, while having no effect on the mouse gut microbiota. Our results suggest that alternative small-molecule DHFR DD stabilizers (such as 14a) may be ideal substitutes for TMP in instances when conditional, non-antibiotic control of protein abundance is desired in the eye and beyond.

SUBMITTER: Peng H 

PROVIDER: S-EPMC6804886 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Non-antibiotic Small-Molecule Regulation of DHFR-Based Destabilizing Domains <i>In Vivo</i>.

Peng Hui H   Chau Viet Q VQ   Phetsang Wanida W   Sebastian Rebecca M RM   Stone M Rhia L MRL   Datta Shyamtanu S   Renwick Marian M   Tamer Yusuf T YT   Toprak Erdal E   Koh Andrew Y AY   Blaskovich Mark A T MAT   Hulleman John D JD  

Molecular therapy. Methods & clinical development 20190815


The <i>E. coli</i> dihydrofolate reductase (DHFR) destabilizing domain (DD), which shows promise as a biologic tool and potential gene therapy approach, can be utilized to achieve spatial and temporal control of protein abundance <i>in vivo</i> simply by administration of its stabilizing ligand, the routinely prescribed antibiotic trimethoprim (TMP). However, chronic TMP use drives development of antibiotic resistance (increasing likelihood of subsequent infections) and disrupts the gut microbio  ...[more]

Similar Datasets

| S-EPMC3156383 | biostudies-literature
| S-EPMC4696822 | biostudies-literature
| S-EPMC4992426 | biostudies-literature
| S-EPMC6187056 | biostudies-literature
| S-EPMC3521243 | biostudies-literature
| S-EPMC2593907 | biostudies-literature
2019-02-15 | GSE109369 | GEO
| S-EPMC3296833 | biostudies-literature
| S-EPMC4990076 | biostudies-literature
| S-EPMC3351140 | biostudies-literature