Unknown

Dataset Information

0

Proton Transfer Charge Reduction Enables High-Throughput Top-Down Analysis of Large Proteoforms.


ABSTRACT: Despite the recent technological advances in Fourier transform mass spectrometry (FTMS) instrumentation, top-down proteomics (TDP) is currently mostly applied to the characterization of proteoforms <30 kDa due to the poor performance of high-resolution FTMS for the analysis of larger proteoforms and the high complexity of intact proteomes in the 30-60 kDa mass range. Here, we propose a novel data acquisition method based on ion-ion proton transfer, herein termed proton transfer charge reduction (PTCR), to investigate large proteoforms of Pseudomonas aeruginosa in a high-throughput fashion. We designed a targeted data acquisition strategy, named tPTCR, which applies two consecutive gas phase fractionation steps for obtaining intact precursor masses: first, a narrow (1.5 m/z-wide) quadrupole filter m/z transmission window is used to select a subset of charge states from all ionized proteoform cations; second, this aliquot of protein cations is subjected to PTCR in order to reduce their average charge state: upon m/z analysis in an Orbitrap, proteoform mass spectra with minimal m/z peak overlap and easy-to-interpret charge state distributions are obtained, simplifying the proteoform mass calculation. Subsequently, the same quadrupole-selected narrow m/z region of analytes is subjected to collisional dissociation to obtain proteoform sequence information, which used in combination with intact mass information leads to proteoform identification through an off-line database search. The newly proposed method was benchmarked against the previously developed "medium/high" data-dependent acquisition strategy and doubled the number of UniProt entries and proteoforms >30 kDa identified on the liquid chromatography time scale.

SUBMITTER: Huguet R 

PROVIDER: S-EPMC7008508 | biostudies-literature | 2019 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Proton Transfer Charge Reduction Enables High-Throughput Top-Down Analysis of Large Proteoforms.

Huguet Romain R   Mullen Christopher C   Srzentić Kristina K   Greer Joseph B JB   Fellers Ryan T RT   Zabrouskov Vlad V   Syka John E P JEP   Kelleher Neil L NL   Fornelli Luca L  

Analytical chemistry 20191122 24


Despite the recent technological advances in Fourier transform mass spectrometry (FTMS) instrumentation, top-down proteomics (TDP) is currently mostly applied to the characterization of proteoforms <30 kDa due to the poor performance of high-resolution FTMS for the analysis of larger proteoforms and the high complexity of intact proteomes in the 30-60 kDa mass range. Here, we propose a novel data acquisition method based on ion-ion proton transfer, herein termed proton transfer charge reduction  ...[more]

Similar Datasets

| S-EPMC5861018 | biostudies-literature
| S-EPMC7543059 | biostudies-literature
| S-EPMC10175728 | biostudies-literature
| S-EPMC7029676 | biostudies-literature
| S-EPMC5555583 | biostudies-literature
| S-EPMC4427557 | biostudies-literature
| S-EPMC5996497 | biostudies-literature
| S-EPMC6178225 | biostudies-literature
| S-EPMC8543976 | biostudies-literature
| S-EPMC6109964 | biostudies-literature