Development of a multiplex one step RT-PCR that detects eighteen respiratory viruses in clinical specimens and comparison with real time RT-PCR.
Ontology highlight
ABSTRACT: Rapid and accurate diagnosis of viral respiratory infections is crucial for patient management. Multiplex reverse transcriptase polymerase chain reaction (mRT-PCR) is used increasingly to diagnose respiratory infections and has shown to be more sensitive than viral culture and antigen detection. Objective of the present study was to develop a one-step mRT-PCR that could detect 18 respiratory viruses in three sets. The method was compared with real time RT-PCR (rRT-PCR) for its sensitivity and specificity. Clinical specimens from 843 pediatric patients with respiratory symptoms were used in the study. 503 (59.7%) samples were detected positive by mRT-PCR. Of these 462 (54.8%) exhibited presence of a single pathogen and 41 (4.9%) had multiple pathogens. rRT-PCR detected 439 (52.1%) positive samples, where 419 (49.7%) exhibited one virus and 20 (2.4%) showed co-infections. Concordance between mRT-PCR and rRT-PCR was 91.9% and kappa correlation 0.837. Sensitivity and specificity of mRT-PCR were 99.5% and 83.7% while that of rRT-PCR was 86.9% and 99.4% respectively. Rhinovirus (17.2%) was the most frequently detected virus followed by respiratory syncytial virus B (15.4%), H1N1pdm09 (8.54%), parainfluenza virus-3 (5.8%) and metapneumovirus (5.2%). In conclusion, mRT-PCR is a rapid, cost effective, specific and highly sensitive method for detection of respiratory viruses.
SUBMITTER: Choudhary ML
PROVIDER: S-EPMC7119668 | biostudies-literature | 2013 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA