Project description:CaseA 34-year-old woman was referred to our hospital with progressive movement disorders and neurodegeneration with brain iron accumulation and enlargement of the frontal diploe on the MRI. Metabolic testing revealed that she had α-mannosidosis (AMD), a lysosomal storage disorder.BackgroundAMD is a rare genetic disorder that causes α-mannosidase deficiency resulting in lysosomal accumulation of undigested oligosaccharides. The symptoms of AMD consist of facial and skeletal deformities combined with progressive psychiatric and neurological complaints, especially ataxia and mental retardation. Bilateral patellar dislocation and hearing impairment are frequent.DiscussionThe movement disorders we found in our patient have not been reported previously, but they are likely late symptoms of this progressive disorder. The iron deposits in the basal ganglia have also not been reported in AMD and are yet of unknown significance. Lysosomal storage disorders, such as AMD, should be considered in patients with progressive neurologic conditions and neurodegeneration with brain iron accumulation on MRI.
Project description:Neuropathology plays a key role in characterizing the pathogenesis of neurodegenerative diseases including forms of neurodegeneration with brain iron accumulation (NBIA). Despite important differences, several genetically diverse forms of NBIA nevertheless share common features in addition to iron deposition, such as the presence of neuroaxonal spheroids. Multiple forms of NBIA also demonstrate tau or synuclein pathology, suggesting parallels with both Alzheimer and Parkinson diseases. This chapter summarizes what has been learned from the study of human patient tissues. Gross and microscopic findings are delineated, and similarities and differences between forms of NBIA are presented. Neuropathologic findings often help characterize fundamental features of disease and provide a springboard for more focused hypothesis-driven studies. Lessons learned from neuropathology thus contribute much to the characterization of the molecular mechanisms of disease.
Project description:Neurodegeneration with brain iron accumulation (NBIA) encompasses a group of inherited disorders that share the clinical features of an extrapyramidal movement disorder accompanied by varying degrees of intellectual disability and abnormal iron deposition in the basal ganglia. The genetic basis of ten forms of NBIA is now known. The clinical features of NBIA range from rapid global neurodevelopmental regression in infancy to mild parkinsonism with minimal cognitive impairment in adulthood, with wide variation seen between and within the specific NBIA sub-type. This review describes the clinical presentations, imaging findings, pathologic features, and treatment considerations for this heterogeneous group of disorders.
Project description:Most neurodegeneration with brain iron accumulation (NBIA) disorders can be distinguished by identifying characteristic changes on magnetic resonance imaging (MRI) in combination with clinical findings. However, a significant number of patients with an NBIA disorder confirmed by genetic testing have MRI features that are atypical for their specific disease. The appearance of specific MRI patterns depends on the stage of the disease and the patient's age at evaluation. MRI interpretation can be challenging because of heterogeneously acquired MRI datasets, individual interpreter bias, and lack of quantitative data. Therefore, optimal acquisition and interpretation of MRI data are needed to better define MRI phenotypes in NBIA disorders. The stepwise approach outlined here may help to identify NBIA disorders and delineate the natural course of MRI-identified changes.
Project description:Perturbation of iron distribution is observed in many neurodegenerative disorders, including Alzheimer's and Parkinson's disease, but the comprehension of the metal role in the development and progression of such disorders is still very limited. The combination of more powerful brain imaging techniques and faster genomic DNA sequencing procedures has allowed the description of a set of genetic disorders characterized by a constant and often early accumulation of iron in specific brain regions and the identification of the associated genes; these disorders are now collectively included in the category of neurodegeneration with brain iron accumulation (NBIA). So far 10 different genetic forms have been described but this number is likely to increase in short time. Two forms are linked to mutations in genes directly involved in iron metabolism: neuroferritinopathy, associated to mutations in the FTL gene and aceruloplasminemia, where the ceruloplasmin gene product is defective. In the other forms the connection with iron metabolism is not evident at all and the genetic data let infer the involvement of other pathways: Pank2, Pla2G6, C19orf12, COASY, and FA2H genes seem to be related to lipid metabolism and to mitochondria functioning, WDR45 and ATP13A2 genes are implicated in lysosomal and autophagosome activity, while the C2orf37 gene encodes a nucleolar protein of unknown function. There is much hope in the scientific community that the study of the NBIA forms may provide important insight as to the link between brain iron metabolism and neurodegenerative mechanisms and eventually pave the way for new therapeutic avenues also for the more common neurodegenerative disorders. In this work, we will review the most recent findings in the molecular mechanisms underlining the most common forms of NBIA and analyze their possible link with brain iron metabolism.
Project description:Neurodegeneration with brain iron accumulation (NBIA) mostly has its disease onset in childhood, adolescence, or early adulthood and usually presents with predominant bulbar and axial dystonia along with signs such as spasticity, indicating an involvement of additional neurological systems. Because of their early onset and presentation with a combination of dystonia plus other neurological symptoms, they are usually not considered as differential diagnosis for late-onset isolated (idiopathic) craniocervical dystonia. In this case series, we present 4 genetically proven cases of NBIA (including neuroferritinopathy, pantothenate-kinase-associated neurodegeneration, and aceruloplasminemia) with late disease onset, which resembled isolated adult-onset craniocervical dystonia at disease onset. We also want to highlight the importance of taking NBIA into consideration when dealing with putatively isolated late-onset dystonias and of picking up unusual signs at later stages of the disease.
Project description:Background and objectivePatients with a clinical diagnosis of neurodegeneration with brain iron accumulation (NBIA, formerly called Hallervorden-Spatz syndrome) often have mutations in PANK2, the gene encoding pantothenate kinase 2. We investigated correlations between brain MR imaging changes, mutation status, and clinical disease features.MethodsBrain MRIs from patients with NBIA were reviewed by 2 neuroradiologists for technical factors, including signal intensity abnormalities in specific brain regions, presence and location of atrophy, presence of white matter abnormality, contrast enhancement, and other comments. PANK2 genotyping was performed by polymerase chain reaction amplification of patient genomic DNA followed by automated nucleotide sequencing.ResultsSixty-six MR imaging examinations from 49 NBIA patients were analyzed, including those from 29 patients with mutations in PANK2. All patients with mutations had the specific pattern of globus pallidus central hyperintensity with surrounding hypointensity on T2-weighted images, known as the eye-of-the-tiger sign. This sign was not seen in any studies from patients without mutations. Even before the globus pallidus hypointensity developed, patients with mutations could be distinguished by the presence of isolated globus pallidus hyperintensity on T2-weighted images. Radiographic evidence for iron deposition in the substantia nigra was absent early in disease associated with PANK2 mutations. MR imaging abnormalities outside the globus pallidus, including cerebral or cerebellar atrophy, were more common and more severe in mutation-negative patients. No specific MR imaging changes could be distinguished among the mutation-negative patients.ConclusionMR imaging signal intensity abnormalities in the globus pallidus can distinguish patients with mutations in PANK2 from those lacking a mutation, even in the early stages of disease.
Project description:Background:Specific phenomenology and pattern of involvement in movement disorders point toward a probable clinical diagnosis. For example, forehead chorea usually suggests Huntington's disease; feeding dystonia suggests neuroacanthocytosis and risus sardonicus is commonly seen in Wilson's disease. Dystonic opisthotonus has been described as a characteristic feature of neurodegeneration with brain iron accumulation (NBIA) related to PANK2 and PLA2G6 mutations. Case report:We describe two additional patients in their 30s with severe extensor truncal dystonia causing opisthotonic posturing in whom evaluation revealed the diagnosis of NBIA confirmed by genetic testing. Discussion:Dystonic opisthotonus may be more common in NBIA than it is reported and its presence especially in a young patient should alert the neurologists to a possibility of probable NBIA.
Project description:A 68-year-old male patient presented to the neurology clinic with tremor, lightheadedness, and a history of syncope. Exam showed mild Parkinsonism. Neuroimaging revealed symmetric lesions of the globus pallidus (the eye-of-the-tiger sign) concerning for neurodegeneration with brain iron accumulation (NBIA). Genetic panel for NBIA was ordered, specifically pantothenate kinase-associated neurodegeneration (PKAN), including pantothenate kinase 2 (PanK2) - the genetic marker for the pantothenate kinase enzyme.
Project description:ObjectiveTo describe the clinico-radiological phenotype of 3 patients harboring a homozygous novel AP4M1 pathogenic mutation.MethodsThe 3 patients from an inbred family who exhibited early-onset developmental delay, tetraparesis, juvenile motor function deterioration, and intellectual deficiency were investigated by magnetic brain imaging using T1-weighted, T2-weighted, T2*-weighted, fluid-attenuated inversion recovery, susceptibility weighted imaging (SWI) sequences. Whole-exome sequencing was performed on the 3 patients.ResultsIn the 3 patients, brain imaging identified the same pattern of bilateral SWI hyposignal of the globus pallidus, concordant with iron accumulation. A novel homozygous nonsense mutation was identified in AP4M1, segregating with the disease and leading to truncation of half of the adap domain of the protein.ConclusionsOur results suggest that AP4M1 represents a new candidate gene that should be considered in the neurodegeneration with brain iron accumulation (NBIA) spectrum of disorders and highlight the intersections between hereditary spastic paraplegia and NBIA clinical presentations.