Accelerated telomere shortening independent of LRRK2 variants in Chinese patients with Parkinson's disease.
Ontology highlight
ABSTRACT: Oxidative stress and inflammation play vital roles in Parkinson's disease (PD) development. Thus, telomere length is expected to be shortened in this disease, but current data are inconclusive. We performed a case-control study of 261 patients with PD and 270 sex and age-matched healthy controls treated at the Peking Union Medical College Hospital. We found leucocyte telomere length (LTL) was significantly shortened in PD as compared with controls [1.02 (0.84-1.39) vs. 1.48 (1.08-1.94), P<0.001] and shorter LTL was associated with a dramatically increased risk of PD (lowest vs. highest quartile odds ratio (OR) =9.54, 95% CI: 5.33-17.06, P<0.001). We also investigated the roles of six LRRK2 variants in the susceptibility to PD. R1441C/G/H, G2019S, and I2020T variations were not detected in our study. No significant differences were found in the presence of variants R1398H (15.4% vs. 17.0%, P=0.619) and R1628P (2.3% vs. 0.7%, P=0.159) in PD and controls, while the G2385R variant was found to be a risk factor associated with increased PD susceptibility (OR=2.14, 95% CI: 1.12-4.10, P=0.021). No significant association was found between different LRRK2 variants and telomere length. These findings suggest that shorter LTL might be associated with PD in a manner independent of LRRK2 variants.
SUBMITTER: Wu Y
PROVIDER: S-EPMC7655166 | biostudies-literature | 2020 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA