Acetylation/deacetylation and microtubule associated proteins influence flagellar axonemal stability and sperm motility.
Ontology highlight
ABSTRACT: PTMs and microtubule-associated proteins (MAPs) are known to regulate microtubule dynamicity in somatic cells. Reported literature on modulation of ?-tubulin acetyl transferase (?TAT1) and histone deacetylase 6 (HDAC6) in animal models and cell lines illustrate disparity in correlating tubulin acetylation status with stability of MT. Our earlier studies showed reduced acetyl tubulin in sperm of asthenozoospermic individuals. Our studies on rat sperm showed that on inhibition of HDAC6 activity, although tubulin acetylation increased, sperm motility was reduced. Studies were therefore undertaken to investigate the influence of tubulin acetylation/deacetylation on MT dynamicity in sperm flagella using rat and human sperm. Our data on rat sperm revealed that HDAC6 specific inhibitor Tubastatin A (T) inhibited sperm motility and neutralized the depolymerizing and motility debilitating effect of Nocodazole. The effect on polymerization was further confirmed in vitro using pure MT and recHDAC6. Also polymerized axoneme was less in sperm of asthenozoosperm compared to normozoosperm. Deacetylase activity was reduced in sperm lysates and axonemes exposed to T and N+T but not in axonemes of sperm treated similarly suggesting that HDAC6 is associated with sperm axonemes or MT. Deacetylase activity was less in asthenozoosperm. Intriguingly, the expression of MDP3 physiologically known to bind to HDAC6 and inhibit its deacetylase activity remained unchanged. However, expression of acetyl ?-tubulin, HDAC6 and microtubule stabilizing protein SAXO1 was less in asthenozoosperm. These observations suggest that MAPs and threshold levels of MT acetylation/deacetylation are important for MT dynamicity in sperm and may play a role in regulating sperm motility.
SUBMITTER: Chawan V
PROVIDER: S-EPMC7711059 | biostudies-literature | 2020 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA