Ontology highlight
ABSTRACT: Background and purpose
The amino-acid positron emission tomography (PET) tracer 3,4-dihydroxy-6-[18F] fluoro-l-phenylalanine (18F-DOPA) has increased sensitivity for detecting regions of biologically aggressive tumors compared to T1 contrast-enhanced (T1-CE) magnetic resonance imaging (MRI). We performed dosimetric evaluation of treatment plans prepared with and without inclusion of 18F-DOPA-based biological target volume (BTV) evaluating its role in guiding radiotherapy of grade III/IV gliomas.Materials and methods
Eight patients (five T1-CE, three non-contrast-enhancing [NCE]) were included in our study. MRI only-guided anatomic plans and MRI+18FDOPA-PET-guided biologic plans were prepared for each patient, and dosimetric data for target volumes and organs at risk (OAR) were compared. High-dose BTV60Gy was defined as regions with tumor to normal brain (T/N) >2.0, while low-dose BTV51Gy was initially based on T/N >1.3, but refined per Nuclear Medicine expert.Results
For T1-CE tumors, planning target volumes (PTV) were larger than MRI-only anatomic target volumes. Despite increases in size of both gross target volumes and PTV, with volumetric-modulated arc therapy planning, no increase of dose to OAR was observed while maintaining similar target dose coverage. For NCE tumors, MRI+18F-DOPA PET biologic imaging identified a sub-region of the large, T2-FLAIR abnormal signal which may allow a smaller volume to receive the high dose (60?Gy) radiation.Conclusions
For T1-CE tumors, PTVs were larger than MRI-only anatomic target volumes with no increase of dose to OARs. Therefore, MRI+18F-DOPA PET-based biologic treatment planning appears feasible in patients with high-grade gliomas.
SUBMITTER: Kazda T
PROVIDER: S-EPMC7807641 | biostudies-literature | 2018 Apr
REPOSITORIES: biostudies-literature
Kazda Tomas T Pafundi Deanna H DH Kraling Alan A Bradley Thomas T Lowe Val J VJ Brinkmann Debra H DH Laack Nadia N NN
Physics and imaging in radiation oncology 20180401
<h4>Background and purpose</h4>The amino-acid positron emission tomography (PET) tracer 3,4-dihydroxy-6-[<sup>18</sup>F] fluoro-l-phenylalanine (<sup>18</sup>F-DOPA) has increased sensitivity for detecting regions of biologically aggressive tumors compared to T1 contrast-enhanced (T1-CE) magnetic resonance imaging (MRI). We performed dosimetric evaluation of treatment plans prepared with and without inclusion of <sup>18</sup>F-DOPA-based biological target volume (BTV) evaluating its role in guid ...[more]