Unknown

Dataset Information

0

Evaluation of SARS-CoV-2 3C-like protease inhibitors using self-assembled monolayer desorption ionization mass spectrometry.


ABSTRACT: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic that began in 2019. The coronavirus 3-chymotrypsin-like cysteine protease (3CLpro) controls replication and is therefore considered a major target for antiviral discovery. This study describes the evaluation of SARS-CoV-2 3CLpro inhibitors in a novel self-assembled monolayer desorption ionization mass spectrometry (SAMDI-MS) enzymatic assay. Compared with a traditional FRET readout, the label-free SAMDI-MS assay offers greater sensitivity and eliminates false positive inhibition from compound interference with the optical signal. The SAMDI-MS assay was optimized and validated with known inhibitors of coronavirus 3CLpro such as GC376 (IC50 = 0.060 ?M), calpain inhibitors II and XII (IC50 ~20-25 ?M). The FDA-approved drugs shikonin, disulfiram, and ebselen did not inhibit SARS-CoV-2 3CLpro activity in the SAMDI-MS assay under physiologically relevant reducing conditions. The three drugs did not directly inhibit human ?-coronavirus OC-43 or SARS-CoV-2 in vitro, but instead induced cell death. In conclusion, the SAMDI-MS 3CLpro assay, combined with antiviral and cytotoxic assessment, provides a robust platform to evaluate antiviral agents directed against SARS-CoV-2.

SUBMITTER: Gurard-Levin ZA 

PROVIDER: S-EPMC7834858 | biostudies-literature | 2020 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications


Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic that began in 2019. The coronavirus 3-chymotrypsin-like cysteine protease (3CLpro) controls replication and is therefore considered a major target for antiviral discovery. This study describes the evaluation of SARS-CoV-2 3CLpro inhibitors in a novel self-assembled monolayer desorption ionization mass spectrometry (SAMDI-MS) enzymatic assay. Compared with a traditional FRET readout, the label-free  ...[more]

Similar Datasets

| S-EPMC6848775 | biostudies-literature
| S-EPMC3176668 | biostudies-literature
| S-EPMC2939284 | biostudies-literature
| S-EPMC3259225 | biostudies-literature
| S-EPMC5887808 | biostudies-other
| S-EPMC3073421 | biostudies-literature
| S-EPMC3938891 | biostudies-literature
| S-EPMC3165113 | biostudies-literature
| S-EPMC2242481 | biostudies-literature
| S-EPMC6821845 | biostudies-other