Project description:The portfolio of SARS-CoV-2 small molecule drugs is currently limited to a handful that are either approved (remdesivir), emergency approved (dexamethasone, baricitinib, paxlovid, and molnupiravir), or in advanced clinical trials. Vandetanib is a kinase inhibitor which targets the vascular endothelial growth factor receptor (VEGFR), the epidermal growth factor receptor (EGFR), as well as the RET-tyrosine kinase. In the current study, it was tested in different cell lines and showed promising results on inhibition versus the toxic effect on A549-hACE2 cells (IC50 0.79 μM) while also showing a reduction of >3 log TCID50/mL for HCoV-229E. The in vivo efficacy of vandetanib was assessed in a mouse model of SARS-CoV-2 infection and statistically significantly reduced the levels of IL-6, IL-10, and TNF-α and mitigated inflammatory cell infiltrates in the lungs of infected animals but did not reduce viral load. Vandetanib also decreased CCL2, CCL3, and CCL4 compared to the infected animals. Vandetanib additionally rescued the decreased IFN-1β caused by SARS-CoV-2 infection in mice to levels similar to that in uninfected animals. Our results indicate that the FDA-approved anticancer drug vandetanib is worthy of further assessment as a potential therapeutic candidate to block the COVID-19 cytokine storm.
Project description:Viral illnesses like SARS-CoV-2 have pathologic effects on nonrespiratory organs in the absence of direct viral infection. We injected mice with cocktails of rodent equivalents of human cytokine storms resulting from SARS-CoV-2/COVID-19 or rhinovirus common cold infection. At low doses, COVID-19 cocktails induced glomerular injury and albuminuria in zinc fingers and homeoboxes 2 (Zhx2) hypomorph and Zhx2+/+ mice to mimic COVID-19-related proteinuria. Common Cold cocktail induced albuminuria selectively in Zhx2 hypomorph mice to model relapse of minimal change disease, which improved after depletion of TNF-α, soluble IL-4Rα, or IL-6. The Zhx2 hypomorph state increased cell membrane to nuclear migration of podocyte ZHX proteins in vivo (both cocktails) and lowered phosphorylated STAT6 activation (COVID-19 cocktail) in vitro. At higher doses, COVID-19 cocktails induced acute heart injury, myocarditis, pericarditis, acute liver injury, acute kidney injury, and high mortality in Zhx2+/+ mice, whereas Zhx2 hypomorph mice were relatively protected, due in part to early, asynchronous activation of STAT5 and STAT6 pathways in these organs. Dual depletion of cytokine combinations of TNF-α with IL-2, IL-13, or IL-4 in Zhx2+/+ mice reduced multiorgan injury and eliminated mortality. Using genome sequencing and CRISPR/Cas9, an insertion upstream of ZHX2 was identified as a cause of the human ZHX2 hypomorph state.
Project description:A cytokine storm is one of the leading causes of acute respiratory distress syndrome (ARDS) and sepsis-associated multiple organ failure in many respiratory viral infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The coronavirus disease 2019 (COVID-19) pandemic has caused millions of deaths worldwide, resulting in an urgent need for effective therapeutic interventions. Repurposing immunosuppressive drugs that target cytokines with immunomodulatory properties is a promising approach to counteract SARS-CoV-2-induced ARDS at the infective and post-infective stages. In this minireview, we examine drugs targeting IL-1β, IL-4/IL-13, IL-6 and TNF-α tested in COVID-19 patients.
Project description:COVID-19-infected patients require an intact immune system to suppress viral replication and prevent complications. However, the complications of SARS-CoV-2 infection that led to death were linked to the overproduction of proinflammatory cytokines known as cytokine storm syndrome. This article reported the various checkpoints targeted to manage the SARS-CoV-2-induced cytokine storm. The literature search was carried out using PubMed, Embase, MEDLINE, and China National Knowledge Infrastructure (CNKI) databases. Journal articles that discussed SARS-CoV-2 infection and cytokine storm were retrieved and appraised. Specific checkpoints identified in managing SARS-CoV-2 induced cytokine storm include a decrease in the level of Nod-Like Receptor 3 (NLRP3) inflammasome where drugs such as quercetin and anakinra were effective. Janus kinase-2 and signal transducer and activator of transcription-1 (JAK2/STAT1) signaling pathways were blocked by medicines such as tocilizumab, baricitinib, and quercetin. In addition, inhibition of interleukin (IL)-6 with dexamethasone, tocilizumab, and sarilumab effectively treats cytokine storm and significantly reduces mortality caused by COVID-19. Blockade of IL-1 with drugs such as canakinumab and anakinra, and inhibition of Bruton tyrosine kinase (BTK) with zanubrutinib and ibrutinib was also beneficial. These agents' overall mechanisms of action involve a decrease in circulating proinflammatory chemokines and cytokines and or blockade of their receptors. Consequently, the actions of these drugs significantly improve respiration and raise lymphocyte count and PaO2/FiO2 ratio. Targeting cytokine storms' pathogenesis genetic and molecular apparatus will substantially enhance lung function and reduce mortality due to the COVID-19 pandemic.
Project description:BackgroundThe coronavirus disease (COVID-19) is a pandemic disease that threatens worldwide public health, and rheumatoid arthritis (RA) is the most common autoimmune disease. COVID-19 and RA are each strong risk factors for the other, but their molecular mechanisms are unclear. This study aims to investigate the biomarkers between COVID-19 and RA from the mechanism of pyroptosis and find effective disease-targeting drugs.MethodsWe obtained the common gene shared by COVID-19, RA (GSE55235), and pyroptosis using bioinformatics analysis and then did the principal component analysis(PCA). The Co-genes were evaluated by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and ClueGO for functional enrichment, the protein-protein interaction (PPI) network was built by STRING, and the k-means machine learning algorithm was employed for cluster analysis. Modular analysis utilizing Cytoscape to identify hub genes, functional enrichment analysis with Metascape and GeneMANIA, and NetworkAnalyst for gene-drug prediction. Network pharmacology analysis was performed to identify target drug-related genes intersecting with COVID-19, RA, and pyroptosis to acquire Co-hub genes and construct transcription factor (TF)-hub genes and miRNA-hub genes networks by NetworkAnalyst. The Co-hub genes were validated using GSE55457 and GSE93272 to acquire the Key gene, and their efficacy was assessed using receiver operating curves (ROC); SPEED2 was then used to determine the upstream pathway. Immune cell infiltration was analyzed using CIBERSORT and validated by the HPA database. Molecular docking, molecular dynamics simulation, and molecular mechanics-generalized born surface area (MM-GBSA) were used to explore and validate drug-gene relationships through computer-aided drug design.ResultsCOVID-19, RA, and pyroptosis-related genes were enriched in pyroptosis and pro-inflammatory pathways(the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex, death-inducing signaling complex, regulation of interleukin production), natural immune pathways (Network map of SARS-CoV-2 signaling pathway, activation of NLRP3 inflammasome by SARS-CoV-2) and COVID-19-and RA-related cytokine storm pathways (IL, nuclear factor-kappa B (NF-κB), TNF signaling pathway and regulation of cytokine-mediated signaling). Of these, CASP1 is the most involved pathway and is closely related to minocycline. YY1, hsa-mir-429, and hsa-mir-34a-5p play an important role in the expression of CASP1. Monocytes are high-caspase-1-expressing sentinel cells. Minocycline can generate a highly stable state for biochemical activity by docking closely with the active region of caspase-1.ConclusionsCaspase-1 is a common biomarker for COVID-19, RA, and pyroptosis, and it may be an important mediator of the excessive inflammatory response induced by SARS-CoV-2 in RA patients through pyroptosis. Minocycline may counteract cytokine storm inflammation in patients with COVID-19 combined with RA by inhibiting caspase-1 expression.
Project description:The recently identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, the cause of coronavirus disease (COVID-19) and the associated ongoing pandemic, frequently leads to severe respiratory distress syndrome and pneumonia with fatal consequences. Although several factors of this infection and its consequences are not completely clear, the presence and involvement of specific chemokines is undoubtedly crucial for the development and progression of COVID-19. Cytokine storm and the often-resulting cytokine release syndrome (CRS) are pathophysiological hallmarks in COVID-19 infections related to its most severe and fatal cases. In this hyperinflammatory event, chemokines and other cytokines are highly upregulated and are therefore not fulfilling their beneficial function in the host response anymore but causing harmful effects. Here, we present the recent views on the involvement of chemokines and selected cytokines in COVID-19 and the therapeutics currently in clinical development targeting or interfering with them, discussing their potentials in the treatment of COVID-19 infections.
Project description:BackgroundCardiac manifestations during Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) pandemic have included acute coronary syndrome, arrhythmias, myocarditis, and stress cardiomyopathy. However, the combination of cardiomyopathy and negative cardiac biomarkers has not yet been reported.Case summaryA 49-year-old man admitted for respiratory failure secondary to SARS-CoV-2 developed new-onset cardiomyopathy with negative cardiac biomarkers. Left ventricular ejection fraction and strain improved 7 days after the initial echocardiogram, after administration of Tocilizumab, coinciding with clinical recovery, and improvement in inflammatory markers.DiscussionAs experience of cardiovascular manifestations of SARS-CoV-2 increases, more patients will likely present with cardiovascular manifestations; the recognition and proper management of these may improve patient outcomes.
Project description:The coronavirus disease 2019 pandemic caused by severe acute respiratory syndrome coronavirus 2 presents with a spectrum of clinical manifestations from asymptomatic or mild, self-limited constitutional symptoms to a hyperinflammatory state ("cytokine storm") followed by acute respiratory distress syndrome and death. The objective of this study was to provide an evidence-based review of the associated pathways and potential treatment of the hyperinflammatory state associated with severe acute respiratory syndrome coronavirus 2 infection. Dysregulated immune responses have been reported to occur in a smaller subset of those infected with severe acute respiratory syndrome coronavirus 2, leading to clinical deterioration 7 to 10 days after initial presentation. A hyperinflammatory state referred to as cytokine storm in its severest form has been marked by elevation of IL-6, IL-10, TNF-α, and other cytokines and severe CD4+ and CD8+ T-cell lymphopenia and coagulopathy. Recognition of at-risk patients could permit early institution of aggressive intensive care and antiviral and immune treatment to reduce the complications related to this proinflammatory state. Several reports and ongoing clinical trials provide hope that available immunomodulatory therapies could have therapeutic potential in these severe cases. This review highlights our current state of knowledge of immune mechanisms and targeted immunomodulatory treatment options for the current coronavirus disease 2019 pandemic.
Project description:The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is responsible for the ongoing COVID-19 pandemic, and causes many health complications, including major lung diseases. Besides investigations into the virology of SARS-CoV-2, understanding the immunological routes underlying the clinical manifestations of COVID-19 is important for developing effective therapeutic interventions. The clearance of SARS-CoV-2-infected apoptotic cells by professional efferocytes, through a process termed as 'efferocytosis', is essential for maintaining tissue homeostasis, and reducing the chances of health complications caused by SARS-CoV-2 infection. In this review, we focus on the cellular events leading to engagement of the SARS-CoV-2 with type 2 alveolar cells, and how SARS-COV-2 infection impairs the macrophage anti-inflammatory programming. We also discuss accounts of impaired efferocytosis, and the "cytokine storm" which occur concomitantly with the SARS-CoV-2 infection. Finally, we propose how targeting impaired efferocytosis, due to the SARS-CoV-2 infection, may be a beneficial therapeutic strategy to combat COVID-19, and its complications.
Project description:The pandemic of the new coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has led to the deaths of more than 1.5 million people worldwide. SARS-CoV-2 causes COVID-19, which exhibits wide variation in the course of disease in different people, ranging from asymptomatic and mild courses to very severe courses that can result in respiratory failure and death. Despite the rapid progression of knowledge, we still do not know how individual cells of the immune system interact with the virus or its components, or how immune homeostasis becomes disrupted, leading to the rapid deterioration of a patient's condition. In the present work, we show that SARS-CoV-2 proteins induce the expression and secretion of IL-6 by human monocytes and macrophages, the first line cells of antiviral immune responses. IL-6 may play a negative role in the course of COVID-19 by inhibiting Th1-dependent immunity and stimulating Th17 lymphocytes, thus leading to an increased probability of a cytokine storm.