Unknown

Dataset Information

0

Electrical conductivity in a non-covalent two-dimensional porous organic material with high crystallinity.


ABSTRACT: Electroactive macrocycle building blocks are a promising route to new types of functional two-dimensional porous organic frameworks. Our strategy uses conjugated macrocycles that organize into two dimensional porous sheets via non-covalent van der Waals interactions, to make ultrathin films that are just one molecule thick. In bulk, these two-dimensional (2D) sheets stack into a three-dimensional van der Waals crystal, where relatively weak alkyl-alkyl interactions constitute the interface between these sheets. With the liquid-phase exfoliation, we are able to obtain films as thin as two molecular layers. Further using a combination of liquid-phase and mechanical exfoliation, we are able to create non-covalent sheets over a large area (>100 μm2). The ultrathin porous films maintain the single crystal packing from the macrocyclic structure and are electrically conductive. We demonstrate that this new type of 2D non-covalent porous organic framework can be used as the active layer in a field effect transistor device with graphene source and drain contacts along with hexagonal boron nitride as the gate dielectric interface.

SUBMITTER: Xu Q 

PROVIDER: S-EPMC8179372 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5707461 | biostudies-literature
| S-EPMC8152767 | biostudies-literature
| S-EPMC5027280 | biostudies-literature
| S-EPMC5577517 | biostudies-literature
| S-EPMC9624200 | biostudies-literature
| S-EPMC5154734 | biostudies-literature
| S-EPMC5997983 | biostudies-literature
| S-EPMC8197260 | biostudies-literature
| S-EPMC4600973 | biostudies-literature
| S-EPMC7311054 | biostudies-literature