Unknown

Dataset Information

0

Clinical CDK4/6 inhibitors induce selective and immediate dissociation of p21 from cyclin D-CDK4 to inhibit CDK2.


ABSTRACT: Since their discovery as drivers of proliferation, cyclin-dependent kinases (CDKs) have been considered therapeutic targets. Small molecule inhibitors of CDK4/6 are used and tested in clinical trials to treat multiple cancer types. Despite their clinical importance, little is known about how CDK4/6 inhibitors affect the stability of CDK4/6 complexes, which bind cyclins and inhibitory proteins such as p21. We develop an assay to monitor CDK complex stability inside the nucleus. Unexpectedly, treatment with CDK4/6 inhibitors-palbociclib, ribociclib, or abemaciclib-immediately dissociates p21 selectively from CDK4 but not CDK6 complexes. This effect mediates indirect inhibition of CDK2 activity by p21 but not p27 redistribution. Our work shows that CDK4/6 inhibitors have two roles: non-catalytic inhibition of CDK2 via p21 displacement from CDK4 complexes, and catalytic inhibition of CDK4/6 independent of p21. By broadening the non-catalytic displacement to p27 and CDK6 containing complexes, next-generation CDK4/6 inhibitors may have improved efficacy and overcome resistance mechanisms.

SUBMITTER: Pack LR 

PROVIDER: S-EPMC8184839 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3213155 | biostudies-literature
| S-EPMC7434954 | biostudies-literature
| S-EPMC7954990 | biostudies-literature
| S-EPMC2649830 | biostudies-literature
| S-EPMC10239507 | biostudies-literature
| S-EPMC4286569 | biostudies-literature
| S-EPMC5490269 | biostudies-literature
| S-EPMC3667761 | biostudies-literature
| S-EPMC7326642 | biostudies-literature
| S-EPMC10029018 | biostudies-literature