Project description:CD41 expression is associated with the earliest stages of mouse hematopoiesis. It is notably expressed on some cells of the intra-aortic hematopoietic clusters, an area where the first adult-repopulating hematopoietic stem cells (HSCs) are generated. Although it is generally accepted that CD41 expression marks the onset of primitive/definitive hematopoiesis, there are few published data concerning its expression on HSCs. It is as yet uncertain whether HSCs express CD41 throughout development, and if so, to what level. We performed a complete in vivo transplantation analysis with yolk sac, aorta, placenta, and fetal liver cells, sorted based on CD41 expression level. Our data show that the earliest emerging HSCs in the aorta express CD41 in a time-dependent manner. In contrast, placenta and liver HSCs are CD41⁻. Thus, differential and temporal expression of CD41 by HSCs in the distinct hematopoietic territories suggests a developmental/dynamic regulation of this marker throughout development.
Project description:Cancer stem cells (CSCs) represent the subpopulation of cancer cells with the ability to differentiate into other cell phenotypes and initiated tumorigenesis. Previously, we reported generating CSCs from mouse induced pluripotent stem cells (miPSCs). Here, we investigated the ability of the CSCs to differentiate into hematopoietic cells. First, the primary cells were isolated from malignant tumors that were formed by the CSCs. Non-adherent cells (NACs) that arose from adherent cells were collected and their viability, as well as the morphology and expression of hematopoietic cell markers, were analyzed. Moreover, NACs were injected into the tail vein of busulfan conditioned Balb/c nude mice. Finally, CSCs were induced to differentiate to macrophages while using IL3 and SCF. The round nucleated NACs were found to be viable, positive for hematopoietic lineage markers and CD34, and expressed hematopoietic markers, just like homing to the bone marrow. When NACs were injected into mice, Wright-Giemsa staining showed that the number of white blood cells got higher than those in the control mice after four weeks. CSCs also showed the ability to differentiate toward macrophages. CSCs were demonstrated to have the potential to provide progenies with hematopoietic markers, morphology, and homing ability to the bone marrow, which could give new insight into the tumor microenvironment according to the plasticity of CSCs.
Project description:Hematopoietic stem cells (HSCs) are rare cells that generate all the various types of blood and immune cells. High-quality transcriptome data have enabled the identification of significant genes for HSCs. However, most genes are expressed in various forms by alternative splicing (AS), extending transcriptome complexity. Here, we delineate AS to determine which isoforms are expressed in mouse HSCs. Our analysis of microarray and RNA-sequencing data includes differential expression of splicing factors that may regulate AS, and a complete map of splicing isoforms. Multiple types of isoforms for known HSC genes and unannotated splicing that may alter gene function are presented. Transcriptome-wide identification of genes and their respective isoforms in mouse HSCs will open another dimension for adult stem cells.
Project description:The contribution of basal cellular processes to the regulation of tissue homeostasis has just started to be appreciated. However, our knowledge of the modulation of ribosome biogenesis activity in situ within specific lineages remains very limited. This is largely due to the lack of assays that enable quantitation of ribosome biogenesis in small numbers of cells in vivo. We used a technique, named Flow-FISH, combining cell surface antibody staining and flow cytometry with intracellular ribosomal RNA (rRNA) FISH, to measure the levels of pre-rRNAs of hematopoietic cells in vivo. Here, we show that Flow-FISH reports and quantifies ribosome biogenesis activity in hematopoietic cell populations, thereby providing original data on this fundamental process notably in rare populations such as hematopoietic stem and progenitor cells. We unravel variations in pre-rRNA levels between different hematopoietic progenitor compartments and during erythroid differentiation. In particular, our data indicate that, contrary to what may be anticipated from their quiescent state, hematopoietic stem cells have significant ribosome biogenesis activity. Moreover, variations in pre-rRNA levels do not correlate with proliferation rates, suggesting that cell type-specific mechanisms might regulate ribosome biogenesis in hematopoietic stem cells and progenitors. Our study contributes to a better understanding of the cellular physiology of the hematopoietic system in vivo in unperturbed situations.
Project description:A unique subset of CD86(-) HSCs was previously discovered in mice that were old or chronically stimulated with lipopolysaccharide. Functionally defective HSCs were also present in those animals, and we now show that CD86(-) CD150(+) CD48(-) HSCs from normal adult mice are particularly poor at restoring the adaptive immune system. Levels of the marker are high on all progenitors with lymphopoietic potential, and progressive loss helps to establish relations between progenitors corresponding to myeloid and erythroid lineages. CD86 represents an important tool for subdividing HSCs in several circumstances, identifying those unlikely to generate a full spectrum of hematopoietic cells.
Project description:We performed cDNA microarrays (Affymetrix Mouse Gene 1.0 ST Chip) to analyze the transcriptome of hematopoietic stem and progenitor cells (HSPCs) from E15.5dpc wild type and Geminin (Gmnn) knockout embryos. Lineage negative cells from embryonic livers were isolated using fluorescence activated cell sorting. RNA samples were used to examine the transcriptional programs regulated by Geminin during embryonic hematopoiesis. The data sets were analyzed using the GeneSpring v12.5 platform (Agilent). The list of differentially expressed genes was filtered in meta-analyses to investigate the molecular basis of the phenotype observed in the knockout embryos, which exhibited defective hematopoiesis and death. The data from this study are related to the research article "Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors" (Karamitros et al., 2015) [1]. The microarray dataset has been deposited at the Gene Expression Omnibus (GEO) under accession GEO: GSE53056.
Project description:BackgroundActivation of protease-activated receptor 1 (PAR1) by either thrombin or activated protein C (aPC) differentially regulate the quiescence and bone marrow (BM) retention of hematopoietic stem cells (HSC). Murine HSC co-express THBD, PAR1, and endothelial protein C receptor (EPCR), suggesting that HSC sustain quiescence in a quasi-cell autonomous manner due to the binding of thrombin present in the microenvironment to THBD, activation of EPCR-bound protein C by the thrombin-THBD-complex, and subsequent activation of PAR1 by the aPC-EPCR complex.ObjectiveTo determine the role of THBD expression on HSC for sustaining stem cell quiescence and BM retention under homeostatic conditions.MethodsHematopoietic stem cell function was analyzed in mice with constitutive or temporally controlled complete THBD-deficiency by flow cytometry, functional assays, and single cell RNA profiling.ResultsTHBD was expressed in mouse, but not human, HSC, progenitors, and immature B cells. Expression in vascular endothelium was conserved in humans' BM. Mice with constitutive THBD deficiency had a normal peripheral blood profile, altered BM morphology, reduced numbers of progenitors and immature B cells, pronounced extramedullary hematopoiesis, increased HSC frequency, and marginally altered transcriptionally defined HSC stemness. Transplantation experiments indicated near normal engraftment and repopulating ability of THBD-deficient HSC. Transgenic aPC supplementation normalized BM histopathology and HSC abundance, and partially restored transcriptional stemness, but had no effect on B cell progenitors and extramedullary hematopoiesis. Temporally controlled THBD gene ablation in adult mice did not cause the above abnormalities.ConclusionTHBD expression on HSPC has minor effects on homeostatic hematopoiesis in mice, and is not conserved in humans.
Project description:The milk fat globule-EGF-factor 8 protein (MFG-E8) has been identified in various tissues, where it has an important role in intercellular interactions, cellular migration, and neovascularization. Previous studies showed that MFG-E8 is expressed in different cell types under normal and pathophysiological conditions, but its expression in hematopoietic stem cells (HSCs) during hematopoiesis has not been reported. In the present study, we investigated MFG-E8 expression in multiple hematopoietic tissues at different stages of mouse embryogenesis. Using immunohistochemistry, we showed that MFG-E8 was specifically expressed in CD34(+) HSCs at all hematopoietic sites, including the yolk sac, aorta-gonad-mesonephros region, placenta and fetal liver, during embryogenesis. Fluorescence-activated cell sorting and polymerase chain reaction analyses demonstrated that CD34(+) cells, purified from the fetal liver, expressed additional HSC markers, c-Kit and Sca-1, and that these CD34(+) cells, but not CD34(-) cells, highly expressed MFG-E8. We also found that MFG-E8 was not expressed in HSCs in adult mouse bone marrow, and that its expression was confined to F4/80(+) macrophages. Together, this study demonstrates, for the first time, that MFG-8 is expressed in fetal HSC populations, and that MFG-E8 may have a role in embryonic hematopoiesis.
Project description:Utilizing multipotent and self-renewing capabilities, hematopoietic stem cells (HSCs) can maintain hematopoiesis throughout life. However, the mechanism behind such remarkable abilities remains undiscovered, at least in part because of the paucity of HSCs and the modest ex vivo expansion of HSCs in media that contain poorly defined albumin supplements such as bovine serum albumin. Here, we describe a simple platform for the expansion of functional mouse HSCs ex vivo for >1 month under fully defined albumin-free conditions. The culture system affords 236- to 899-fold expansion over the course of a month and is also amenable to clonal analysis of HSC heterogeneity. The large numbers of expanded HSCs enable HSC transplantation into nonconditioned recipients, which is otherwise not routinely feasible because of the large numbers of HSCs required. This protocol therefore provides a powerful approach with which to interrogate HSC self-renewal and lineage commitment and, more broadly, to study and characterize the hematopoietic and immune systems.
Project description:The interactions of hematopoietic stem and progenitor cells (HSPCs) with extracellular matrix (ECM) components and cells from the bone marrow (BM) microenvironment control their homeostasis. Regenerative BM conditions can induce expression of the ECM protein transforming growth factor beta-induced gene H3 (TGFBI or BIGH3) in murine HSPCs. In this study, we examined how increased or reduced TGFBI expression in human HSPCs and BM mesenchymal stromal cells (MSCs) affects HSPC maintenance, differentiation, and migration. HSPCs that overexpressed TGFBI showed accelerated megakaryopoiesis, whereas granulocyte differentiation and proliferation of granulocyte, erythrocyte, and monocyte cultures were reduced. In addition, both upregulation and downregulation of TGFBI expression impaired HSPC colony-forming capacity of HSPCs. Interestingly, the colony-forming capacity of HSPCs with reduced TGFBI levels was increased after long-term co-culture with MSCs, as measured by long-term culture-colony forming cell (LTC-CFC) formation. Moreover, TGFBI downregulation in HSPCs resulted in increased cobblestone area-forming cell (CAFC) frequency, a measure for hematopoietic stem cell (HSC) capacity. Concordantly, TGFBI upregulation in HSPCs resulted in a decrease of CAFC and LTC-CFC frequency. These results indicate that reduced TGFBI levels in HSPCs enhanced HSC maintenance, but only in the presence of MSCs. In addition, reduced levels of TGFBI in MSCs affected MSC/HSPC interaction, as observed by an increased migration of HSPCs under the stromal layer. In conclusion, tight regulation of TGFBI expression in the BM niche is essential for balanced HSPC proliferation and differentiation.