Unknown

Dataset Information

0

Oriented Soft DNA Curtains for Single-Molecule Imaging.


ABSTRACT: Over the past 20 years, single-molecule methods have become extremely important for biophysical studies. These methods, in combination with new nanotechnological platforms, can significantly facilitate experimental design and enable faster data acquisition. A nanotechnological platform, which utilizes a flow-stretch of immobilized DNA molecules, called DNA Curtains, is one of the best examples of such combinations. Here, we employed new strategies to fabricate a flow-stretch assay of stably immobilized and oriented DNA molecules using a protein template-directed assembly. In our assay, a protein template patterned on a glass coverslip served for directional assembly of biotinylated DNA molecules. In these arrays, DNA molecules were oriented to one another and maintained extended by either single- or both-end immobilization to the protein templates. For oriented both-end DNA immobilization, we employed heterologous DNA labeling and protein template coverage with the antidigoxigenin antibody. In contrast to single-end immobilization, both-end immobilization does not require constant buffer flow for keeping DNAs in an extended configuration, allowing us to study protein-DNA interactions at more controllable reaction conditions. Additionally, we increased the immobilization stability of the biotinylated DNA molecules using protein templates fabricated from traptavidin. Finally, we demonstrated that double-tethered Soft DNA Curtains can be used in nucleic acid-interacting protein (e.g., CRISPR-Cas9) binding assay that monitors the binding location and position of individual fluorescently labeled proteins on DNA.

SUBMITTER: Kopu Stas A 

PROVIDER: S-EPMC8280724 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC2779460 | biostudies-literature
| S-EPMC3340036 | biostudies-literature
| S-EPMC4111998 | biostudies-literature
| S-EPMC6679933 | biostudies-literature
| S-EPMC6265486 | biostudies-literature
| S-EPMC4843451 | biostudies-literature
| S-EPMC4119245 | biostudies-literature
| S-EPMC4624423 | biostudies-literature
| S-EPMC3494904 | biostudies-literature
| S-EPMC6326794 | biostudies-literature