Unknown

Dataset Information

0

Assessment of 1/f noise associated with nanopores fabricated through chemically tuned controlled dielectric breakdown.


ABSTRACT: Recently, we developed a fabrication method-chemically-tuned controlled dielectric breakdown (CT-CDB)-that produces nanopores (through thin silicon nitride membranes) surpassing legacy drawbacks associated with solid-state nanopores (SSNs). However, the noise characteristics of CT-CDB nanopores are largely unexplored. In this work, we investigated the 1/f noise of CT-CDB nanopores of varying solution pH, electrolyte type, electrolyte concentration, applied voltage, and pore diameter. Our findings indicate that the bulk Hooge parameter (αb ) is about an order of magnitude greater than SSNs fabricated by transmission electron microscopy (TEM) while the surface Hooge parameter (αs ) is ∼3 order magnitude greater. Theαs of CT-CDB nanopores was ∼5 orders of magnitude greater than theirαb , which suggests that the surface contribution plays a dominant role in 1/f noise. Experiments with DNA exhibited increasing capture rates with pH up to pH ∼8 followed by a drop at pH ∼9 perhaps due to the onset of electroosmotic force acting against the electrophoretic force. The1/f noise was also measured for several electrolytes and LiCl was found to outperform NaCl, KCl, RbCl, and CsCl. The 1/f noise was found to increase with the increasing electrolyte concentration and pore diameter. Taken together, the findings of this work suggest the pH approximate 7-8 range to be optimal for DNA sensing with CT-CDB nanopores.

SUBMITTER: Saharia J 

PROVIDER: S-EPMC8377593 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4859154 | biostudies-literature
| S-EPMC3962464 | biostudies-literature
| S-EPMC5775244 | biostudies-literature
| S-EPMC4976334 | biostudies-literature
| S-EPMC2206550 | biostudies-literature
| S-EPMC9388672 | biostudies-literature
| S-EPMC11013984 | biostudies-literature
| S-EPMC9057579 | biostudies-literature
| S-EPMC3864131 | biostudies-literature
| S-EPMC3657615 | biostudies-literature