Unknown

Dataset Information

0

In Vivo Single-Molecule Detection of Nanoparticles for Multiphoton Fluorescence Correlation Spectroscopy to Quantify Cerebral Blood Flow.


ABSTRACT: We present the application of multiphoton in vivo fluorescence correlation spectroscopy (FCS) of fluorescent nanoparticles for the measurement of cerebral blood flow with excellent spatial and temporal resolution. Through the detection of single nanoparticles within the complex vessel architecture of a live mouse, this new approach enables the quantification of nanoparticle dynamics occurring within the vasculature along with simultaneous measurements of blood flow properties in the brain. In addition to providing high resolution blood flow measurements, this approach enables real-time quantification of nanoparticle concentration, degradation, and transport. This method is capable of quantifying flow rates at each pixel with submicron resolution to enable monitoring of dynamic changes in flow rates in response to changes in the animal's physiological condition. Scanning the excitation beam using FCS provides pixel by pixel mapping of flow rates with subvessel resolution across capillaries 300 μm deep in the brains of mice.

SUBMITTER: Fu X 

PROVIDER: S-EPMC8405275 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

<i>In Vivo</i> Single-Molecule Detection of Nanoparticles for Multiphoton Fluorescence Correlation Spectroscopy to Quantify Cerebral Blood Flow.

Fu Xu X   Sompol Pradoldej P   Brandon Jason A JA   Norris Christopher M CM   Wilkop Thomas T   Johnson Lance A LA   Richards Christopher I CI  

Nano letters 20200708 8


We present the application of multiphoton <i>in vivo</i> fluorescence correlation spectroscopy (FCS) of fluorescent nanoparticles for the measurement of cerebral blood flow with excellent spatial and temporal resolution. Through the detection of single nanoparticles within the complex vessel architecture of a live mouse, this new approach enables the quantification of nanoparticle dynamics occurring within the vasculature along with simultaneous measurements of blood flow properties in the brain  ...[more]

Similar Datasets

| S-EPMC4472016 | biostudies-literature
| S-EPMC7568003 | biostudies-literature
| S-EPMC2582625 | biostudies-literature
| S-EPMC10482352 | biostudies-literature
| S-EPMC6919592 | biostudies-literature
| S-EPMC3190609 | biostudies-literature
| S-EPMC3334904 | biostudies-literature
| S-EPMC4821344 | biostudies-literature
| S-EPMC5951022 | biostudies-literature
| S-EPMC7675582 | biostudies-literature