Unknown

Dataset Information

0

Two-photon excitation fluorescent spectral and decay properties of retrograde neuronal tracer Fluoro-Gold.


ABSTRACT: Fluoro-Gold is a fluorescent neuronal tracer suitable for targeted deep imaging of the nervous system. Widefield fluorescence microscopy enables visualization of Fluoro-Gold, but lacks depth discrimination. Though scanning laser confocal microscopy yields volumetric data, imaging depth is limited, and optimal single-photon excitation of Fluoro-Gold requires an unconventional ultraviolet excitation line. Two-photon excitation microscopy employs ultrafast pulsed infrared lasers to image fluorophores at high-resolution at unparalleled depths in opaque tissue. Deep imaging of Fluoro-Gold-labeled neurons carries potential to advance understanding of the central and peripheral nervous systems, yet its two-photon spectral and temporal properties remain uncharacterized. Herein, we report the two-photon excitation spectrum of Fluoro-Gold between 720 and 990 nm, and its fluorescence decay rate in aqueous solution and murine brainstem tissue. We demonstrate unprecedented imaging depth of whole-mounted murine brainstem via two-photon excitation microscopy of Fluoro-Gold labeled facial motor nuclei. Optimal two-photon excitation of Fluoro-Gold within microscope tuning range occurred at 720 nm, while maximum lifetime contrast was observed at 760 nm with mean fluorescence lifetime of 1.4 ns. Whole-mount brainstem explants were readily imaged to depths in excess of 450 µm via immersion in refractive-index matching solution.

SUBMITTER: Miller MQ 

PROVIDER: S-EPMC8433443 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC4409109 | biostudies-literature
| S-EPMC6644928 | biostudies-literature
| S-EPMC5497913 | biostudies-literature
| S-EPMC7747914 | biostudies-literature
| S-EPMC6917482 | biostudies-literature
| S-EPMC5474692 | biostudies-literature
| S-EPMC6385291 | biostudies-other
| S-EPMC7313398 | biostudies-literature
| S-EPMC3411954 | biostudies-literature
| S-EPMC7409827 | biostudies-literature