Ontology highlight
ABSTRACT:
SUBMITTER: Jullien M
PROVIDER: S-EPMC8466314 | biostudies-literature | 2021 Sep
REPOSITORIES: biostudies-literature
Jullien Maxime M Tessoulin Benoit B Ghesquières Hervé H Oberic Lucie L Morschhauser Franck F Tilly Hervé H Ribrag Vincent V Lamy Thierry T Thieblemont Catherine C Villemagne Bruno B Gressin Rémy R Bouabdallah Kamal K Haioun Corinne C Damaj Gandhi G Fornecker Luc-Matthieu LM Schiano De Colella Jean-Marc JM Feugier Pierre P Hermine Olivier O Cartron Guillaume G Bonnet Christophe C André Marc M Bailly Clément C Casasnovas René-Olivier RO Le Gouill Steven S
Cancers 20210907 18
<h4>Background</h4>Muscle depletion (MD) assessed by computed tomography (CT) has been shown to be a predictive marker in solid tumors, but has not been assessed in non-Hodgkin's lymphomas. Despite software improvements, MD measurement remains highly time-consuming and cannot be used in clinical practice.<h4>Methods</h4>This study reports the development of a Deep-Learning automatic segmentation algorithm (DLASA) to measure MD, and investigate its predictive value in a cohort of 656 diffuse larg ...[more]