Project description:RNA-protein interactions mediate a vast number of intracellular processes. CLIR-MS (cross-linking of isotope labeled RNA and tandem mass spectrometry) is a mass spectrometric technique that allows the identification of RNA-protein interaction sites at single nucleotide/amino acid resolution in a single experiment. The use of isotopically labeled RNA segments for UV light induced cross-linking generates characteristic isotope patterns that constrain the sequence database searches, thus increasing resolution. Whereas the use of segmentally isotopically labeled RNA is effective, it is technically involved and not applicable in some settings, e.g. in cell or tissue samples. A straightforward approach that maintains the advantages of isotopic labeling but obviates the need for segmental RNA labeling would therefore advance the field. Here we introduce an extension of the CLIR-MS workflow that uses unlabeled RNA during the cross-linking reaction and subsequently adds an isotopic label during sample preparation for MS analysis. The approach uses commercially available reagents and can be performed without specialized equipment in any lab. After RNase and protease digests of a cross-linked complex, an RNA-peptide adduct consists of a single peptide and a short nucleic acid adduct. We label the nucleic acid part of these adducts using the enzyme T4 polynucleotide kinase (T4-PNK) and a 1:1 mixture of heavy (18O4-gamma-ATP) and light ATP. In this simple, one-step reaction three of the four heavy oxygen atoms are transferred from the gamma-phosphate to the 5'-end of the RNA adduct. The isotopic difference of light and heavy cross-linked peptides (6.01 Da) can be detected using tandem mass spectrometry after enrichment of the cross-linked peptides. We applied this approach to the RNA recognition motif (RRM) of the protein FOX1 in complex with its cognate binding substrate, FOX-binding element RNA (FBE-RNA). Using a variation of the approach, we were able to label a single phosphate within an RNA and unambiguously determine the cross-linking site of the FOX1-RRM to the FBE at single residue resolution on RNA- and protein level. Specifically introducing isotopic labels improves identification of cross-linked species and enables relative quantification based on isotope dilution.
Project description:The ABC transporter P-glycoprotein (Pgp) has been found to be involved in multidrug resistance in tumor cells. Lipids and cholesterol have a pivotal role in Pgp's conformations; however, it is often difficult to investigate it with conventional structural biology techniques. Here, we applied robust approaches coupled with cross-linking mass spectrometry (XL-MS), where the natural lipid environment remains quasi-intact. Two experimental approaches were carried out using different cross-linkers (i) on living cells, followed by membrane preparation and immunoprecipitation enrichment of Pgp, and (ii) on-bead, subsequent to membrane preparation and immunoprecipitation. Pgp-containing complexes were enriched employing extracellular monoclonal anti-Pgp antibodies on magnetic beads, followed by on-bead enzymatic digestion. The LC-MS/MS results revealed mono-links on Pgp's solvent-accessible residues, while intraprotein cross-links confirmed a complex interplay between extracellular, transmembrane, and intracellular segments of the protein, of which several have been reported to be connected to cholesterol. Harnessing the MS results and those of molecular docking, we suggest an epitope for the 15D3 cholesterol-dependent mouse monoclonal antibody. Additionally, enriched neighbors of Pgp prove the strong connection of Pgp to the cytoskeleton and other cholesterol-regulated proteins. These findings suggest that XL-MS may be utilized for protein structure and network analyses in such convoluted systems as membrane proteins.
Project description:Use of a heterobifunctional photoactivatable cross-linker, sulfo-SDA (diazirine), has yielded high-density data that facilitated structure modeling of individual proteins. We expand the photoactivatable chemistry toolbox here with a second reagent, sulfo-SBP (benzophenone). This further increases the density of photo-cross-linking to a factor of 20× over conventional cross-linking. Importantly, the two different photoactivatable groups display orthogonal directionality, enabling access to different protein regions, unreachable with a single cross-linker.
Project description:Cross-linking/mass spectrometry (XL-MS) has come a long way. Originally, XL-MS was used to study relatively small, purified proteins. Meanwhile, it is employed to investigate protein-protein interactions on a proteome-wide level, giving snapshots of cellular processes. Currently, XL-MS is at the intersection of a multitude of workflows and the impact this technique has in addressing specific biological questions is steadily growing. This article is intended to give a bird's-eye view of the current status of XL-MS, the benefits of using MS-cleavable cross-linkers, and the challenges posed in the future development of this powerful technology. We also illustrate how XL-MS can deliver valuable structural insights into protein complexes when used in combination with other structural techniques, such as electron microscopy. Graphical abstract.
Project description:Cross-linking mass spectrometry has developed into an important method to study protein structures and interactions. The in-solution cross-linking workflows involve time and sample consuming steps and do not provide sensible solutions for differentiating cross-links obtained from co-occurring protein oligomers, complexes, or conformers. Here we developed a cross-linking workflow combining blue native PAGE with in-gel cross-linking mass spectrometry (IGX-MS). This workflow circumvents steps, such as buffer exchange and cross-linker concentration optimization. Additionally, IGX-MS enables the parallel analysis of co-occurring protein complexes using only small amounts of sample. Another benefit of IGX-MS, demonstrated by experiments on GroEL and purified bovine heart mitochondria, is the substantial reduction of undesired over-length cross-links compared to in-solution cross-linking. We next used IGX-MS to investigate the complement components C5, C6, and their hetero-dimeric C5b6 complex. The obtained cross-links were used to generate a refined structural model of the complement component C6, resembling C6 in its inactivated state. This finding shows that IGX-MS can provide new insights into the initial stages of the terminal complement pathway.
Project description:Dynamic proteins and multi-protein complexes govern most biological processes. Cross-linking/mass spectrometry (CLMS) is increasingly successful in providing residue-resolution data on static proteinaceous structures. Here we investigate the technical feasibility of recording dynamic processes using isotope-labelling for quantitation. We cross-linked human serum albumin (HSA) with the readily available cross-linker BS3-d0/4 in different heavy/light ratios. We found two limitations. First, isotope labelling reduced the number of identified cross-links. This is in line with similar findings when identifying proteins. Second, standard quantitative proteomics software was not suitable for work with cross-linking. To ameliorate this we wrote a basic open source application, XiQ. Using XiQ we could establish that quantitative CLMS was technically feasible.Cross-linking/mass spectrometry (CLMS) has become a powerful tool for providing residue-resolution data on static proteinaceous structures. Adding quantitation to CLMS will extend its ability of recording dynamic processes. Here we introduce a cross-linking specific quantitation strategy by using isotope labelled cross-linkers. Using a model system, we demonstrate the principle and feasibility of quantifying cross-linking data and discuss challenges one may encounter while doing so. We then provide a basic open source application, XiQ, to carry out automated quantitation of CLMS data. Our work lays the foundations of studying the molecular details of biological processes at greater ease than this could be done so far.
Project description:Cross-linking mass spectrometry has developed into an important method to study protein structures and interactions. The in-solution cross-linking workflows involve time and sample consuming steps and do not provide sensible solutions for differentiating cross-links obtained from co-occurring protein oligomers, complexes, or conformers. Here we developed a cross-linking workflow combining blue native PAGE with in-gel cross-linking mass spectrometry (IGX-MS). This workflow circumvents steps, such as buffer exchange and cross-linker concentration optimization. Additionally, IGX-MS enables the parallel analysis of co-occurring protein complexes using only small amounts of sample. Another benefit of IGX-MS, demonstrated by experiments on GroEL and purified bovine heart mitochondria, is the substantial reduction of undesired over-length cross-links compared to in-solution cross-linking. We next used IGX-MS to investigate the complement components C5, C6, and their hetero-dimeric C5b6 complex. The obtained cross-links were used to generate a refined structural model of the complement component C6, resembling C6 in its inactivated state. This finding shows that IGX-MS can provide new insights into the initial stages of the terminal complement pathway.
Project description:Quantitative cross-linking mass spectrometry (QCLMS) reveals structural detail on altered protein states in solution. On its way to becoming a routine technology, QCLMS could benefit from data-independent acquisition (DIA), which generally enables greater reproducibility than data-dependent acquisition (DDA) and increased throughput over targeted methods. Therefore, here we introduce DIA to QCLMS by extending a widely used DIA software, Spectronaut, to also accommodate cross-link data. A mixture of seven proteins cross-linked with bis[sulfosuccinimidyl] suberate (BS3) was used to evaluate this workflow. Out of the 414 identified unique residue pairs, 292 (70%) were quantifiable across triplicates with a coefficient of variation (CV) of 10%, with manual correction of peak selection and boundaries for PSMs in the lower quartile of individual CV values. This compares favorably to DDA where we quantified cross-links across triplicates with a CV of 66%, for a single protein. We found DIA-QCLMS to be capable of detecting changing abundances of cross-linked peptides in complex mixtures, despite the ratio compression encountered when increasing sample complexity through the addition of E. coli cell lysate as matrix. In conclusion, the DIA software Spectronaut can now be used in cross-linking and DIA is indeed able to improve QCLMS.
Project description:Cross-linking/mass spectrometry is an increasingly popular approach to obtain structural information on proteins and their complexes in solution. However, methods for error assessment are under current development. We note that false-discovery rates can be estimated at different points during data analysis, and are most relevant for residue or protein pairs. Missing this point led in our example analysis to an actual 8.4% error when 5% error was targeted. In addition, prefiltering of peptide-spectrum matches and of identified peptide pairs substantially improved results. In our example, this prefiltering increased the number of residue pairs (5% FDR) by 33% (n = 108 to n = 144). This number improvement did not come at the expense of reduced accuracy as the added data agreed with an available crystal structure. We provide an open-source tool, xiFDR ( https://github.com/rappsilberlab/xiFDR ), that implements our observations for routine application. Data are available via ProteomeXchange with identifier PXD004749.
Project description:The number of publications in the field of chemical cross-linking combined with mass spectrometry (XL-MS) to derive constraints for protein three-dimensional structure modeling and to probe protein-protein interactions has increased during the last years. As the technique is now becoming routine for in vitro and in vivo applications in proteomics and structural biology there is a pressing need to define protocols as well as data analysis and reporting formats. Such consensus formats should become accepted in the field and be shown to lead to reproducible results. This first, community-based harmonization study on XL-MS is based on the results of 32 groups participating worldwide. The aim of this paper is to summarize the status quo of XL-MS and to compare and evaluate existing cross-linking strategies. Our study therefore builds the framework for establishing best practice guidelines to conduct cross-linking experiments, perform data analysis, and define reporting formats with the ultimate goal of assisting scientists to generate accurate and reproducible XL-MS results.