Project description:[reaction: see text] Nearly all known sulfatases share a common active site modification that is required for their activity: conversion of cysteine to alpha-formylglycine. We report the synthesis of an alpha-formylglycine building block suitable for Fmoc-based solid-phase peptide synthesis. The building block was incorporated into a synthetic peptide derived from the active site of a Mycobacterium tuberculosis sulfatase.
Project description:Contrary to other studies, here we describe cysteine (Cys) pseudoproline-containing peptides with short deprotection times in TFA. The deprotection times fell in the same range as other protecting groups commonly used in SPPS (e.g., 1-3 h). Moreover, when using Cys pseudoprolines as peptide macrocyclization-enhancing moieties a considerable reduction in reaction time was observed compared to a peptide containing trityl protected Cys.
Project description:Despite recent advances, the direct Fmoc-based solid phase synthesis of peptide α-thioesters for the convergent synthesis of proteins via native chemical ligation (NCL) remains a challenge in the field. We herein report a simple and general methodology, enabling access to peptide thioester surrogates. A novel C-terminal N-(2-hydroxybenzyl)cysteine thioesterification device based on an amide-to-thioester rearrangement was developed, and the resulting peptide crypto-thioesters can be directly used in NCL reactions with fast N → S shift kinetics at neutral pH. These fast kinetics arise from our bio-inspired design, via intein-like intramolecular catalysis. Due to a well-positioned phenol moiety, an impressive >50 fold increase in the kinetic rate is observed compared to an O-methylated derivative. Importantly, the synthesis of this new device can be fully automated using inexpensive commercially available materials and does not require any post-synthetic steps prior to NCL. We successfully applied this new method to the synthesis of two long naturally-occurring cysteine-rich peptide sequences.
Project description:The synthesis of 1-(2-nitrophenylethyl) caged O-phosphorothioylserine, -threonine and -tyrosine derivatives is reported. These amino acid building blocks can be directly incorporated into peptides by Fmoc-based solid phase synthesis as their pentafluorophenyl esters or as symmetric anhydrides. Upon irradiation with UV light, the thiophosphate group, representing a hydrolysis resistant phosphate analog, is revealed.
Project description:Selectins (L, E, and P) are vascular endothelial molecules that play an important role in the recruitment of leukocytes to inflamed tissue. In this regard, P-Selectin glycoprotein-1 (PSGL-1) has been identified as a ligand for P-Selectin. PSGL-1 binds to P-Selectin through the interaction of core-2 O-glycan expressing sialyl Lewis(x) oligosaccharide and the three tyrosine sulfate residues. Herein, we report the synthesis of threonine-linked core-2 O-glycan as an amino acid building block for the synthesis of PSGL-1. This building block was further incorporated in the Fmoc-assisted solid-phase peptide synthesis to provide a portion of the PSGL-1 glycopeptide.
Project description:We report a facile approach to the synthesis of acetonide and Fmoc protected 3,4-dihydroxyphenylalanine (DOPA), Fmoc-DOPA(acetonide)-OH. By protecting the amino group of DOPA with a phthaloyl group and the carboxyl group as a methyl ester, acetonide protection of the catechol of DOPA derivative was realized in the presence of p-toluenesulfonic acid. Following removal of protecting groups, the intermediate was converted to Fmoc-DOPA(acetonide)-OH, which was successfully incorporated into a short DOPA-containing peptide, derived from marine tubeworm cement proteins Pc1 and Pc2.
Project description:The deprotection step is crucial in order to secure a good quality product in Fmoc solid phase peptide synthesis. 9-Fluorenylmethoxycarbonyl (Fmoc) removal is achieved by a two-step mechanism reaction favored by the use of cyclic secondary amines; however, the efficiency of the reaction could be affected by side reactions and by-product formation. Several aspects have to be taken into consideration when selecting a deprotection reagent: its physicochemical behavior, basicity (pKa) and polarity, concentration, and time of reaction, toxicity and disposability of residues and, finally, availability of reagents. This report presents a comparison of the performance of three strategies for deprotection using microwave-assisted Fmoc peptide synthesis. Four peptide sequences were synthesized using Rink amide resin with a Liberty Blue™ automated synthesizer and 4-methylpiperidine (4MP), piperidine (PP), and piperazine (PZ) as Fmoc removal reagents. In the first instance all three reagents behaved similarly. A detailed analysis showed a correlation between the hydrophobicity and size of the peptide with the yield and purity of the obtained product. The three reagents are interchangeable, and replacement of piperidine could be advantageous regarding toxicity and reagent handling.
Project description:C-terminal hydrazides are an important class of synthetic peptides with an ever expanding scope of applications, but their widespread application for chemical protein synthesis has been hampered due to the lack of stable resin linkers for synthesis of longer and more challenging peptide hydrazide fragments. We present a practical method for the regeneration, loading, and storage of trityl-chloride resins for the production of hydrazide containing peptides, leveraging 9-fluorenylmethyl carbazate. We show that these resins are extremely stable under several common resin storage conditions. The application of these resins to solid phase peptide synthesis (SPPS) is demonstrated through the synthesis of the 40-mer GLP-1R agonist peptide "P5". These studies support the broad utility of Fmoc-NHNH-Trt resins for SPPS of C-terminal hydrazide peptides.
Project description:An amine-derivatized DOTA has been used to modify the surface of a polymeric support for conventional Solid Phase Peptide Synthesis (SPPS) following standard Fmoc chemistry methods. This methodology was used to synthesize a peptide-DOTA conjugate that was demonstrated to be a PARACEST MRI contrast agent. Therefore, this synthesis methodology can facilitate Fmoc SPPS of molecular imaging contrast agents.
Project description:Peptide synthesis is an area with a wide field of application, from biomedicine to nanotechnology, that offers the option of simultaneously synthesizing a large number of sequences for the purpose of preliminary screening, which is a powerful tool. Nevertheless, standard protocols generate large volumes of solvent waste. Here, we present a protocol for the multiple Fmoc solid-phase peptide synthesis in tea bags, where reagent recycling steps are included. Fifty-two peptides with wide amino acid composition and seven to twenty amino acid residues in length were synthesized in less than three weeks. A clustering analysis was performed, grouping the peptides by physicochemical features. Although a relationship between the overall yield and the physicochemical features of the sequences was not established, the process showed good performance despite sequence diversity. The recycling system allowed to reduce N, N-dimethylformamide usage by 25-30% and reduce the deprotection reagent usage by 50%. This protocol has been optimized for the simultaneous synthesis of a large number of peptide sequences. Additionally, a reagent recycling system was included in the procedure, which turns the process into a framework of circular economy, without affecting the quality of the products obtained.