Project description:During brain development, axons must extend over great distances in a relatively short amount of time. How the subcellular architecture of the growing axon sustains the requirements for such rapid build-up of cellular constituents has remained elusive. Human axons have been particularly poorly accessible to imaging at high resolution in a near-native context. Here, we present a method that combines cryo-correlative light microscopy and electron tomography with human cerebral organoid technology to visualize growing axon tracts. Our data reveal a wealth of structural details on the arrangement of macromolecules, cytoskeletal components, and organelles in elongating axon shafts. In particular, the intricate shape of the endoplasmic reticulum is consistent with its role in fulfilling the high demand for lipid biosynthesis to support growth. Furthermore, the scarcity of ribosomes within the growing shaft suggests limited translational competence during expansion of this compartment. These findings establish our approach as a powerful resource for investigating the ultrastructure of defined neuronal compartments.
Project description:Although acknowledged to be variable and subjective, manual annotation of cryo-electron tomography data is commonly used to answer structural questions and to create a "ground truth" for evaluation of automated segmentation algorithms. Validation of such annotation is lacking, but is critical for understanding the reproducibility of manual annotations. Here, we used voxel-based similarity scores for a variety of specimens, ranging in complexity and segmented by several annotators, to quantify the variation among their annotations. In addition, we have identified procedures for merging annotations to reduce variability, thereby increasing the reliability of manual annotation. Based on our analyses, we find that it is necessary to combine multiple manual annotations to increase the confidence level for answering structural questions. We also make recommendations to guide algorithm development for automated annotation of features of interest.
Project description:MotivationCryo electron tomography (CryoET) produces 3D density maps of biological specimen in its near native states. Applied to small cells, cryoET produces 3D snapshots of the cellular distributions of large complexes. However, retrieving this information is non-trivial due to the low resolution and low signal-to-noise ratio in tomograms. Current pattern recognition methods identify complexes by matching known structures to the cryo electron tomogram. However, so far only a small fraction of all protein complexes have been structurally resolved. It is, therefore, of great importance to develop template-free methods for the discovery of previously unknown protein complexes in cryo electron tomograms.ResultsHere, we have developed an inference method for the template-free discovery of frequently occurring protein complexes in cryo electron tomograms. We provide a first proof-of-principle of the approach and assess its applicability using realistically simulated tomograms, allowing for the inclusion of noise and distortions due to missing wedge and electron optical factors. Our method is a step toward the template-free discovery of the shapes, abundance and spatial distributions of previously unknown macromolecular complexes in whole cell tomograms.Contactalber@usc.edu
Project description:BackgroundDespite recent advances in cellular cryo-electron tomography (CET), developing automated tools for macromolecule identification in submolecular resolution remains challenging due to the lack of annotated data and high structural complexities. To date, the extent of the deep learning methods constructed for this problem is limited to conventional Convolutional Neural Networks (CNNs). Identifying macromolecules of different types and sizes is a tedious and time-consuming task. In this paper, we employ a capsule-based architecture to automate the task of macromolecule identification, that we refer to as 3D-UCaps. In particular, the architecture is composed of three components: feature extractor, capsule encoder, and CNN decoder. The feature extractor converts voxel intensities of input sub-tomograms to activities of local features. The encoder is a 3D Capsule Network (CapsNet) that takes local features to generate a low-dimensional representation of the input. Then, a 3D CNN decoder reconstructs the sub-tomograms from the given representation by upsampling.ResultsWe performed binary and multi-class localization and identification tasks on synthetic and experimental data. We observed that the 3D-UNet and the 3D-UCaps had an [Formula: see text]score mostly above 60% and 70%, respectively, on the test data. In both network architectures, we observed degradation of at least 40% in the [Formula: see text]-score when identifying very small particles (PDB entry 3GL1) compared to a large particle (PDB entry 4D8Q). In the multi-class identification task of experimental data, 3D-UCaps had an [Formula: see text]-score of 91% on the test data in contrast to 64% of the 3D-UNet. The better [Formula: see text]-score of 3D-UCaps compared to 3D-UNet is obtained by a higher precision score. We speculate this to be due to the capsule network employed in the encoder. To study the effect of the CapsNet-based encoder architecture further, we performed an ablation study and perceived that the [Formula: see text]-score is boosted as network depth is increased which is in contrast to the previously reported results for the 3D-UNet. To present a reproducible work, source code, trained models, data as well as visualization results are made publicly available.ConclusionQuantitative and qualitative results show that 3D-UCaps successfully perform various downstream tasks including identification and localization of macromolecules and can at least compete with CNN architectures for this task. Given that the capsule layers extract both the existence probability and the orientation of the molecules, this architecture has the potential to lead to representations of the data that are better interpretable than those of 3D-UNet.
Project description:Cryo-electron tomography (cryo-ET) allows one to observe macromolecular complexes in their native, spatially contextualized environment. Tools to visualize such complexes at nanometer resolution via iterative alignment and averaging are well-developed but rely on assumptions of structural homogeneity among the complexes under consideration. Recently developed downstream analysis tools allow for some assessment of macromolecular diversity but have limited capacity to represent highly heterogeneous macromolecules, including those undergoing continuous conformational changes. Here, we extend the highly expressive cryoDRGN deep learning architecture, originally created for cryo-electron microscopy single particle analysis, to sub-tomograms. Our new tool, tomoDRGN, learns a continuous low-dimensional representation of structural heterogeneity in cryo-ET datasets while also learning to reconstruct a large, heterogeneous ensemble of structures supported by the underlying data. Using simulated and experimental data, we describe and benchmark architectural choices within tomoDRGN that are uniquely necessitated and enabled by cryo-ET data. We additionally illustrate tomoDRGN's efficacy in analyzing an exemplar dataset, using it to reveal extensive structural heterogeneity among ribosomes imaged in situ.
Project description:Cellular electron cryotomography offers researchers the ability to observe macromolecules frozen in action in situ, but a primary challenge with this technique is identifying molecular components within the crowded cellular environment. We introduce a method that uses neural networks to dramatically reduce the time and human effort required for subcellular annotation and feature extraction. Subsequent subtomogram classification and averaging yield in situ structures of molecular components of interest. The method is available in the EMAN2.2 software package.