Characterization of proteoglycan degradation by calpain.
Ontology highlight
ABSTRACT: Degradation of cartilage proteoglycans was investigated under neutral conditions (pH 7.5) by using pig kidney calpain II (EC 3.4.22.17; Ca(2+)-dependent cysteine proteinase). Aggregate and monomer degradation reached a maximum in 5 min at 30 degrees C when the substrate/enzyme ratio was less than 1000:1. The mode of degradation was limited proteolysis of the core protein; the size of the products was larger than that of papain-digested products and comparable with that of trypsin-digested products. The hyaluronic acid-binding region was lost from the major glycosaminoglycan-bearing region after incubation with calpain II. Calpains thus may affect the form of proteoglycans in connective tissue. Ca(2+)-dependent proteoglycan degradation was unique in that proteoglycans adsorb large amounts of Ca2+ ions rapidly before activation of calpain II: 1 mg of pig cartilage proteoglycan monomer adsorbed 1.3-1.6 mu equiv. of Ca2+ ions before activation of calpain II, which corresponds to half the sum of anion groups in glycosaminoglycan side chains. This adsorption of Ca2+ was lost after solvolysis of proteoglycan monomer with methanol/50 mM-HCl, which was used to desulphate glycosaminoglycans. Therefore cartilage proteoglycans are not merely the substrates of proteolysis, but they may regulate the activation of Ca(2+)-dependent enzymes including calpains through tight chelation of Ca2+ ions between glycosaminoglycan side chains.
SUBMITTER: Suzuki K
PROVIDER: S-EPMC1132875 | biostudies-other | 1992 Aug
REPOSITORIES: biostudies-other
ACCESS DATA