Properties of membrane-bound bilirubin UDP-glucuronyltransferase in rough and smooth endoplasmic reticulum and in the nuclear envelope from rat liver.
Ontology highlight
ABSTRACT: We examined regulatory properties of bilirubin UDP-glucuronyltransferase in sealed RER (rough endoplasmic reticulum)- and SER (smooth endoplasmic reticulum)-enriched microsomes (microsomal fractions), as well as in nuclear envelope from rat liver. Purity of membrane fractions was verified by electron microscopy and marker studies. Intactness of RER and SER vesicles was ascertained by a high degree of latency of the lumenal marker mannose-6-phosphatase. No major differences in the stimulation of UDP-glucuronyltransferase by detergent or by the presumed physiological activator, UDPGlcNAc, were observed between total microsomes and RER- or SER-enriched microsomes. Isolated nuclear envelopes were present as a partially disrupted membrane system, with approx. 50% loss of mannose-6-phosphatase latency. The nuclear transferase had lost its latency to a similar extent, and the enzyme failed to respond to UDPGlcNAc. Our results underscore the necessity to include data on the integrity of the membrane permeability barrier when reporting regulatory properties of UDP-glucuronyltransferase in different membrane preparations.
SUBMITTER: Vanstapel F
PROVIDER: S-EPMC1138569 | biostudies-other | 1989 May
REPOSITORIES: biostudies-other
ACCESS DATA