Characterization of a fusion cDNA (RARA/myl) transcribed from the t(15;17) translocation breakpoint in acute promyelocytic leukemia.
Ontology highlight
ABSTRACT: A nonrandom chromosomal translocation breakpoint, t(15;17)(q22;q21), is found in almost all patients with acute promyelocytic leukemia (APL). Most of these breakpoints occur within the second intron of the retinoic acid receptor-alpha (RARA) gene. We screened a cDNA library of APL and have identified and sequenced a cDNA transcribed from the t(15;17) translocation breakpoint. The 5' end of cDNA p1715 consists of 503 bp of the RARA exon II sequence. A 1.76-kb cDNA without homology to any known gene available in GenBank was found truncated downstream. This cDNA sequence was assigned to chromosome 15 by dot blot hybridization of the flow cytometry-sorted chromosomes. We designate this fusion cDNA RARA/myl, which is different from myl/RARA reported by de The et al. (H. de The, C. Chomienne, M. Lanotte, L. Degos, and A. Dejean, Nature (London) 347:558-561, 1990). This result demonstrates that the two different types of hybrid mRNA can be transcribed from this breakpoint. We screened a non-APL cDNA library and identified a 2.8-kb myl cDNA. This cDNA is able to encode a polypeptide with a molecular weight of 78,450. Alternative splicing of the myl gene which resulted in myl proteins with different C terminals was found. Southern blot analysis of the genomic DNA isolated from 17 APL patients by using the myl DNA probe demonstrated that the myl gene in 12 samples was rearranged. Northern (RNA) blot analysis of RARA gene expression in two APL RNA samples showed abnormal mRNA species of 4.2 and 3.2 kb in one patient and of 4.8 and 3.8 kb in another patient; these were in addition to the normal mRNA species of 3.7 and 2.7-kb. The myl DNA probe detected a 2.6-kb abnormal mRNA in addition to the normal mRNA species of 3.2, 4.2, and 5.5 kb. Using the polymerase chain reaction, we demonstrated that both RARA/myl and myl/RARA were coexpressed in samples from three different APL patients. From this study, we conclude that the t(15;17) translocation breakpoint results in the transcription of two different fusion transcripts which are expected to be translated into fusion proteins.
SUBMITTER: Chang KS
PROVIDER: S-EPMC364308 | biostudies-other | 1992 Feb
REPOSITORIES: biostudies-other
ACCESS DATA