Salience network and parahippocampal dopamine dysfunction in memory-impaired Parkinson disease.
Ontology highlight
ABSTRACT: Patients with Parkinson disease (PD) and mild cognitive impairment (MCI) are vulnerable to dementia and frequently experience memory deficits. This could be the result of dopamine dysfunction in corticostriatal networks (salience, central executive networks, and striatum) and/or the medial temporal lobe. Our aim was to investigate whether dopamine dysfunction in these regions contributes to memory impairment in PD.We used positron emission tomography imaging to compare D2 receptor availability in the cortex and striatal (limbic and associative) dopamine neuron integrity in 4 groups: memory-impaired PD (amnestic MCI; n?=?9), PD with nonamnestic MCI (n?=?10), PD without MCI (n?=?11), and healthy controls (n?=?14). Subjects were administered a full neuropsychological test battery for cognitive performance.Memory-impaired patients demonstrated more significant reductions in D2 receptor binding in the salience network (insular cortex and anterior cingulate cortex [ACC] and the right parahippocampal gyrus [PHG]) compared to healthy controls and patients with no MCI. They also presented reductions in the right insula and right ACC compared to nonamnestic MCI patients. D2 levels were correlated with memory performance in the right PHG and left insula of amnestic patients and with executive performance in the bilateral insula and left ACC of all MCI patients. Associative striatal dopamine denervation was significant in all PD patients.Dopaminergic differences in the salience network and the medial temporal lobe contribute to memory impairment in PD. Furthermore, these findings indicate the vulnerability of the salience network in PD and its potential role in memory and executive dysfunction.
SUBMITTER: Christopher L
PROVIDER: S-EPMC4874785 | biostudies-other | 2015 Feb
REPOSITORIES: biostudies-other
ACCESS DATA