Project description:Four recently published algorithms for the detection of somatic SNV sites in matched cancer-normal sequencing datasets are VarScan, SomaticSniper, JointSNVMix and Strelka. In this analysis, we apply these four SNV calling algorithms to cancer- normal Illumina exome sequencing of a chronic myeloid leukaemia (CML) patient. The candidate SNV sites returned by each algorithm are filtered to remove likely false positives, then characterised and compared to investigate the strengths and weaknesses of each SNV calling algorithm.
Project description:Sustained expression of the estrogen receptor-α (ESR1) drives two-thirds of breast cancer and defines the ESR1-positive subtype. ESR1 engages enhancers upon estrogen stimulation to establish an oncogenic expression program1. Somatic copy number alterations involving the ESR1 gene occur in approximately 1 % of ESR1-positive breast cancers2â5, suggesting that other mechanisms underlie the persistent expression of ESR1. We report significant enrichment of somatic mutations within the set of regulatory elements (SRE) regulating ESR1 in 7% of ESR1-positive breast cancers. These mutations regulate ESR1 expression by modulating transcription factor binding to the DNA. The SRE includes a recurrently mutated enhancer whose activity is also affected by rs9383590, a functional inherited single-nucleotide variant (SNV) that accounts for several breast cancer riskâassociated loci. Our work highlights the importance of considering the combinatorial activity of regulatory elements as a single unit to delineate the impact of noncoding genetic alterations on single genes in cancer. RNA-Seq was performed in HCC1419 cells heterozygous for the functional SNV, rs9383590, to determine which genes displayed an allelic imbalance within a 1MB window.
Project description:This dataset comprises genetic variation data (as somatic indels and snvs VCFs) of 38 OPSCC tumors. WES was done using NextSeq 500 System running in 150 cycles (2x 75bp paired-end) mode. Sequence information was converted to FASTQ format using bcl2fastq v2.20.0.422. VCFs were generated using the Strelka package.
Project description:Somatic L1 retrotransposition events have been shown to occur in epithelial cancers1-8. Here, we attempted to determine how early somatic L1 insertions occurred during the development of gastrointestinal (GI) cancers. Using L1-targeted resequencing (L1-seq), we studied different stages of four colorectal cancers arising from colonic polyps, seven pancreatic carcinomas, as well as seven gastric cancers. Surprisingly, we found somatic L1 insertions not only in all cancer types and metastases, but also in colonic adenomas, well-known cancer precursors. Some insertions were also present in low quantities in normal GI tissues, occasionally caught in the act of being clonally fixed in the adjacent tumors. Insertions in adenomas and cancers numbered in the hundreds and many were present in multiple tumor sections implying clonal distribution. Our results demonstrate that extensive somatic insertional mutagenesis occurs very early during the development of GI tumors, probably before dysplastic growth. We assessed the impact of somatic L1 insertions on the expression of the corresponding protein-coding genes by comparing protein abundance in the polyp with the highest number of somatic L1 insertions with that of its paired normal colon using mass spectrometry analysis. Of the 10 validated somatic insertions that were in protein coding regions in the polyp, two proteins – KIAA1217 and WARS2 – were downregulated in the adenoma >90% and >70%, respectively.