Other

Dataset Information

0

Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior II


ABSTRACT: Astrocytes tile the central nervous system, but their functions in neural microcircuits in vivo and their roles in mammalian behavior remain incompletely defined. We used 2-photon laser scanning microscopy (2PLSM), electrophysiology, MINIscopes, RNA-seq and a new genetic approach to characterize the effects of reduced striatal astrocyte Ca2+ signaling in vivo. In wild type mice, reducing striatal astrocyte Ca2+-dependent signaling increased repetitive self-grooming behaviors by altering medium spiny neuron (MSN) activity. The mechanism involved astrocyte-mediated neuromodulation mediated by ambient GABA and was corrected by blocking astrocyte GABA transporter 3 (GAT-3). Furthermore, in a mouse model of Huntington’s disease, dysregulation of GABA and astrocyte Ca2+ signaling accompanied excessive self-grooming, which was relieved by blocking GAT-3. Assessments with RNA-seq revealed astrocyte genes and pathways regulated by Ca2+ signaling in a cell autonomous and non-cell autonomous manner, including Rab11a, a regulator of GAT-3 functional expression. Thus, striatal astrocytes contribute to neuromodulation controlling obsessive-compulsive-like behavior in mice.

ORGANISM(S): Mus musculus

PROVIDER: GSE114756 | GEO | 2019/05/09

REPOSITORIES: GEO

Similar Datasets

2019-05-09 | GSE114755 | GEO
2022-12-15 | PXD030021 | Pride
2023-01-13 | PXD029257 | Pride
2022-12-14 | PXD034053 | Pride
2020-09-01 | GSE137052 | GEO
2009-10-27 | GSE18726 | GEO
2023-04-03 | GSE228468 | GEO
2009-10-26 | E-GEOD-18726 | biostudies-arrayexpress
2020-11-17 | GSE153791 | GEO
2020-11-17 | GSE143475 | GEO