Transcription and export complex (THO/TREX) coordinates transcription termination in Arabidopsis
Ontology highlight
ABSTRACT: Transcription termination of mRNAs transcribed from a given locus has a decisive role in regulating the gene function as it determines the coding potential and inclusion of regulatory sequence elements. Failure in appropriate transcription termination leads to read-through transcription, resulting in the synthesis of antisense RNAs which can have profound impact on overall gene expression. However, molecular mechanisms which regulate transcription termination and chimeric RNA formation are poorly understood. We explored the regulatory function of transcription and export complex (THO/TREX) in transcription termination. We show that two members of THO/TREX complex, TREX COMPONENT 1 (TEX1) and HYPER RECOMBINATION1(HPR1) are critical for the correct transcription termination in Arabidopsis. We first demonstrate this by showing defective termination of the bacterial nopaline synthase (NOS) terminator on a transgene in tex1 and hpr1 mutants. Additionally, we show that RNA termination defects in tex1 and hpr1 mutants are widespread at the whole genome levels leading to 3’UTR extensions, truncations and in some cases in the formation of intergenic chimeric transcripts. Chromatin immunoprecipitation coupled with quantitative PCR experiments confirmed the presence of RNA polymerase II beyond the canonical termination sites on genes with defective RNA termination in tex1 and hpr1 mutants. These results demonstrate that THO/TREX complex is a novel regulator of transcription termination in Arabidopsis.
Project description:THO/TREX is a conserved nuclear complex that functions in mRNP biogenesis and prevents transcription-associated recombination. Whether or not it has a ubiquitous role in the genome is an open question. ChIP-chip studies reveal that the Hpr1 component of THO and the Sub2 RNA-dependent ATPase have genome wide-distributions at active ORFs in yeast. In contrast to RNAPII, evenly distributed from promoter to termination regions, THO and Sub2 are absent at promoters and distributed in a sharp 5M-bM-^@M-^YM-bM-^FM-^R3M-bM-^@M-^Y gradient. Importantly, ChIP-chips reveal an over-recruitment of Rrm3 in active genes in THO mutants that is reduced by overexpression of RNase H1. Our work establishes a genome-wide function for THO-Sub2 in transcription elongation and mRNP biogenesis that function to prevent the accumulation of transcription-mediated replication obstacles, including R-loops. ChIP-chip studies were perfomed with tagged forms of the Hpr1 component of THO (Hpr1-FLAG), the Sub2 RNA-dependent ATPase of TREX (Sub2-FLAG), the Rpb3 subunit of RNA polymerase II (Rpb3-PK) and the Rrm3 protein (Rrm3-FLAG) in the yeast S. cerevisiae.
Project description:THO/TREX is a conserved nuclear complex that functions in mRNP biogenesis and prevents transcription-associated recombination. Whether or not it has a ubiquitous role in the genome is an open question. ChIP-chip studies reveal that the Hpr1 component of THO and the Sub2 RNA-dependent ATPase have genome wide-distributions at active ORFs in yeast. In contrast to RNAPII, evenly distributed from promoter to termination regions, THO and Sub2 are absent at promoters and distributed in a sharp 5’→3’ gradient. Importantly, ChIP-chips reveal an over-recruitment of Rrm3 in active genes in THO mutants that is reduced by overexpression of RNase H1. Our work establishes a genome-wide function for THO-Sub2 in transcription elongation and mRNP biogenesis that function to prevent the accumulation of transcription-mediated replication obstacles, including R-loops.
Project description:THO/TREX is a conserved nuclear complex that functions in mRNP biogenesis at the interface of transcription-RNA export with a key role in preventing transcription-associated genome instability. We used microarrays to analyze the impact of different THO/TREX mutations on gene expression and found that THO-Sub2 deletions have a high functional impact on highly expressed, long and G+C-rich genes regardless of gene function.
Project description:THO/TREX is a conserved nuclear complex that functions in mRNP biogenesis at the interface of transcription-RNA export with a key role in preventing transcription-associated genome instability. We used microarrays to analyze the impact of different THO/TREX mutations on gene expression and found that THO-Sub2 deletions have a high functional impact on highly expressed, long and G+C-rich genes regardless of gene function. S. cerevisiae strains were grown in YPAD liquid culture, total RNA was isolated and hybridized on Affymetrix microarrays.
Project description:Secondary metabolites are involved in the plant stress response. Among these are scopolin and its active form scopoletin, which are coumarin derivatives associated with reactive oxygen species scavenging and pathogen defence. Here we show that in Arabidopsis thaliana, scopolin accumulation can be induced in the root by osmotic stress and in the leaf by low temperature stress. A genetic screen for altered scopolin levels in Arabidopsis thaliana identified a mutant compromised for scopolin accumulation in response to stress; the lesion was present in a homologue of THO1, the product of which contributes to the THO/TREX complex. The THO/TREX complex contributes to RNA silencing, supposedly by trafficking precursors of small RNAs. Mutants carrying defective THO and RDR6 genes were impaired with respect to scopolin accumulation in response to stress, suggesting a mechanism based on RNA silencing like the transacting small interfering RNA pathway which requires THO/TREX and RDR6 function.
Project description:To gain insight into the impact of THO complex sumoylation on gene expression in yeast S. cerevisiae, total RNAs were extracted from wt and hpr1-KR cells and transcriptome profiles were analyzed by Agilent microarrays. The hpr1 K-R mutant is a version of the hpr1 THO subunit in which lysines 60-65 were simultaneously mutated, which abrogated the sumoylation of the protein.
Project description:Transcription is a major obstacle for replication fork progression and a cause of genome instability. Such instability increases in mutants with a suboptimal assembly of the nascent messenger ribonucleo-protein particle (mRNP), as THO/TREX and the NPC-associated THSC/TREX-2 complex. We used microarrays to analyze the global impact of THSC/TREX-2 in gene expression and found that Thp1 and Sac3 depletion has a functional impact in highly-expressed, long and G+C-rich genes regardless of their function S. cerevisiae strains were grown in YPD liquid culture, total RNA was isolated and hybridized on Affymetrix microarrays
Project description:Transcription is a major obstacle for replication fork progression and a cause of genome instability. Such instability increases in mutants with a suboptimal assembly of the nascent messenger ribonucleo-protein particle (mRNP), as THO/TREX and the NPC-associated THSC/TREX-2 complex. We used microarrays to analyze the global impact of THSC/TREX-2 in gene expression and found that Thp1 and Sac3 depletion has a functional impact in highly-expressed, long and G+C-rich genes regardless of their function