Photoperiodic spectral tuning of carbon metabolism in heterotrophic marine flavobacteria
Ontology highlight
ABSTRACT: Influence of the constant full-spectrum light and short-to-long wavelengths of the visible spectrum (red, green and blue lights) and the significance of 12 h photoperiod was tested on heterotrophic marine flavobacteria Siansivirga zeaxanthinifaciens CC-SAMT-1T. RNA-seq analysis revealed remarkable qualitative and quantitative variations in terms of gene expression in CC-SAMT-1T with respect to incident lights. While blue light illumination stimulated expression of genes involved in inorganic carbon metabolism, green˗red lights largely upregulated the genes participating in high-molecular-weight (HMW) organic carbon metabolism. Constant full-spectrum light also displayed the upregulation of genes involved in the metabolism of HMW organic carbon. Thus, the short-to-long wavelengths of visible light and the 12 h photoperiod most likely to play a key role in the marine carbon cycle by tuning heterotrophic bacterial metabolism.
ORGANISM(S): Siansivirga zeaxanthinifaciens CC-SAMT-1
PROVIDER: GSE129810 | GEO | 2020/04/15
REPOSITORIES: GEO
ACCESS DATA