RNA Seq analyzed the transcriptional difference between the ICSI and ICAHCI embryo in blastocyst and placenta
Ontology highlight
ABSTRACT: Our lab first derived mouse androgenetic haploid embryonic stem cells (AG-haESCs) and demonstrated that AG-haESCs can be used as an “artificial spermatids” to generate gene-edited semi-cloned (SC) mice through intracytoplasmic injection (ICAHCI) into mature oocyte, even though the birth efficiency is very low. Further we proved that H19-DMR and IG-DMR were the main barrier to generate viable mice through androgenetic and parthenogenetic haESCs. More importantly, AG-haESCs mediated SC technology combined with CRISPR-Cas9 is a powerful tool to generate gene-modified mouse models and carry out genetic screening at organismal level. However, it is still not clear how the H19-DMR and IG-DMR coordinately regulate SC embryo development. Here, we found that the H19-DMR and IG-DMR regulate the development of SC embryos in spatio-temporal scales. Firstly, we found that the H19-DMR and IG-DMR are not indispensable for the development of preimplantation of SC embryos. Secondly, H19-DMR is essential for the development of SC embryos in mid-gestation and IG-DMR takes effect in late-gestation. Further, the maintenance of paternal H19-DMR methylation status and deletion of paternal H19 transcription unit play a key role in the structures and transport functions of SC embryo placenta. Importantly, AG-haESCs carrying triple deletions, including H19, H19-DMR and IG-DMR, can further improve the efficiency in generation of viable, normal-size, and fertile mice.
Project description:The use of two inhibitors of Mek1/2 and Gsk3β (2i) promotes the generation of mouse diploid and haploid embryonic stem cells (ESCs) from the inner cell mass of biparental and uniparental blastocysts, respectively. However, a system enabling long-term maintenance of imprints in ESCs has proven challenging. Here, we report that usage of a two-step a2i (alternative two inhibitors of Src and Gsk3β, TSa2i) derivation/culture protocol results in the establishment of androgenetic haploid ESCs (AG-haESCs) with stable DNA methylation at paternal DMRs (differentially DNA methylated regions) up to passage 60 that can efficiently support generating mice upon oocyte injection. We also show coexistence of H3K9me3 marks and ZFP57 bindings with intact DMR methylations. Furthermore, we demonstrate that TSa2i-treated AG-haESCs are a heterogeneous cell population regarding paternal DMR methylation. Strikingly, AG-haESCs with late passages display increased paternal-DMR methylations and improved developmental potential compared to early-passage cells, in part through the enhanced proliferation of H19-DMR hypermethylated cells. Together, we establish AG-haESCs that can long-term maintain paternal imprints.
Project description:We generated RRBS data to analyse the DNA methylation profiling among WT-AG-haESCs, DKO-AG-haESCs and round spermatids, we found deletion of H19 and Gtl2 DMRs do not change the methylation patterns in AG-haESCs base on all detected CpG sites.
Project description:RNA seq result shows that WT-AG-haESCs and DKO-AG-haESCs samples are clustered together using hierarchical cluster both in the all expression genes and imprinting genes. This suggests that DKO of DMRs of H19 and Gtl2 do not change the overall gene expression patterns in AG-haESCs.
Project description:Imprinting at the Dlk1-Dio3 cluster is controlled by the IG-DMR, an imprinting control region differentially methylated between maternal and paternal chromosomes. The maternal IG-DMR is essential for imprinting control, functioning as a cis enhancer element. Meanwhile, DNA methylation at the paternal IG-DMR is thought to prevent enhancer activity. To explore whether suppression of enhancer activity at the methylated IG-DMR requires the transcriptional repressor TRIM28, we analyzed Trim28chatwo embryos and performed epistatic experiments with IG-DMR deletion mutants. We found that while TRIM28 regulates the enhancer properties of the paternal IG-DMR, it also controls imprinting through other mechanisms. Additionally, we found that the paternal IG-DMR, previously deemed dispensable for imprinting, is required in certain tissues, demonstrating that imprinting is regulated in a tissue-specific manner. Using ChRO-seq to analyze nascent transcription, we show that different tissues have a distinctive regulatory landscape at the Dlk1-Dio3 cluster, providing insight into potential mechanisms of tissue-specific imprinting control. ChRO-seq identified 30 novel transcribed regulatory elements, including a candidate regulatory region that depends on the paternal IG-DMR. Together, our findings challenge the model that Dlk1-Dio3 imprinting is regulated through a single mechanism and demonstrate that different tissues use distinct strategies for imprinting control.
Project description:We generated RRBS data to analyse the DNA methylation profiling among WT-AG-haESCs, DKO-AG-haESCs and round spermatids, we found deletion of H19 and Gtl2 DMRs do not change the methylation patterns in AG-haESCs base on all detected CpG sites. We used round spermatids as control and analysed the DNA methylation profiles of all the cell lines were by RRBS.
Project description:This SuperSeries is composed of the following subset Series: GSE35785: mRNA expression data from AG-haESC, E14 and MEF GSE35786: CGH analysis of AG-haESCs (androgenetic haploid embryonic stem cells) Refer to individual Series
Project description:RNA seq result shows that WT-AG-haESCs and DKO-AG-haESCs samples are clustered together using hierarchical cluster both in the all expression genes and imprinting genes. This suggests that DKO of DMRs of H19 and Gtl2 do not change the overall gene expression patterns in AG-haESCs. We used round spermatids as control. Using RNA-seq, profile of all the expression genes and imprinting genes beteween different samples were analysed.
Project description:Haploid cells are amenable for genetic analysis because they contain only one set of chromosomes.Here,we report the derivation of haESCs from androgenetic blastocysts. These cells, which we designated AG-haESCs, express classical ESC markers, are pluripotent, and contribute to various tissues including the germline upon injection into diploid blastocysts. We used microarrays to compare the gene expression levels among androgenetic haploid embryonic stem cell lines(AG-haESC) E14 and male mouse embryonic fibroblasts (MEFs) and identified that most paternally imprinted genes were down-regulated and the maternally imprinted genes were up-regulated.
Project description:Haploid cells are amenable for genetic analysis because they contain only one set of chromosomes.Here,we report the derivation of haESCs from androgenetic blastocysts. These cells, which we designated AG-haESCs, express classical ESC markers, are pluripotent, and contribute to various tissues including the germline upon injection into diploid blastocysts. We used microarrays to compare the gene expression levels among androgenetic haploid embryonic stem cell lines(AG-haESC) E14 and male mouse embryonic fibroblasts (MEFs) and identified that most paternally imprinted genes were down-regulated and the maternally imprinted genes were up-regulated. To avoid the influence of diploidized cells on the expression profile, we collected samples from FACS of cells at G1/G0 stage by staining Hochest 33342. We used E14,which was a male embryonic stem cell lines, and MEFs isloated from male individuals as control. Gene expression profiles of all the cell lines were analysed on an Affymetrix GeneChip 430 2.0 array.