Expression data from stromal cells derived from idiopathic pulmonary fibrosis, lung adenocarcinoma and normal lung.
Ontology highlight
ABSTRACT: Idiopathic pulmonary fibrosis (IPF) and lung cancer share common risk factors, epigenetic and genetic alterations, cellular and molecular aberrations, the activation of similar signaling pathways and poor survival. The aim of this study was to examine the gene expression profiles of stromal cells from patients with IPF and lung adenocarcinoma (ADC) as well as from normal lung.
Project description:Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually lethal lung disease characterized by unknown causes and few treatment options We used microarray to determine the expression of miRNA and 17 miRNAs were differentially expressed in IPF lungs, including 10 upregulated and 7 downregulated miRNAs. Lung tissue was obtained from 4 IPF patients with histological evidence of usual interstitial pneumonia at the time of surgical lung biopsy or lung transplantation. The diagnosis of IPF was derived according to the standards accepted by the American Thoracic Society/European Respiratory Society. Histological normal lung tissues used as controls was obtained from 3 patients with primary spontaneous pneumothorax at the time of thoracoscopy with stapling of any air leak.The miRNA expression profile was determined by Affymetrix microarray, and transcriptome with Affymetrix array
Project description:Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually lethal lung disease characterized by unknown causes and few treatment options We used microarray to determine the expression of miRNA and 17 miRNAs were differentially expressed in IPF lungs, including 10 upregulated and 7 downregulated miRNAs.
Project description:Idiopathic pulmonary fibrosis (IPF) is a lethal fibrotic lung disease characterized by enhanced fibroblast proliferation, collagen synthesis, extracellular matrix deposition. We obtained 28 IPF patient lung tissue samples from the Lung Tissue Research Consortium (LTRC). Here we determined the miRNA expression profiles in these IPF lung samples.
Project description:Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and highly lethal lung disease with unknown etiology and poor prognosis.
Project description:Idiopathic pulmonary fibrosis (IPF) is an untreatable fibrotic lung disease characterized by fibroblast proliferation and epithelial mesenchymal transition. The expression and role of microRNAs (miRNA) has not been studied in IPF. Using miRNA expression microarrays we identified 46 differentially expressed miRNA in IPF lungs which included let-7d and the miR-30 family. Keywords: miRNA expression Lung tissue samples for microarray analysis were obtained through the University of Pittsburgh Health Sciences Tissue Bank. Ten samples were obtained from surgical remnants of biopsies or lungs explanted from patients with IPF who underwent pulmonary transplant, and ten control normal lung tissues obtained from the disease free margins with normal histology of lung cancer resection specimens. The morphologic diagnosis of IPF was based on typical microscopic findings consistent with usual interstitial pneumonia. Total RNA was labeled with Cy3 and hybridized on Agilent 8X15K microRNA array (Agilent Technologies, Santa Clara, CA). After 20 hours hybridization, arrays were washed and scanned according to the manufacturerâs protocol.
Project description:Idiopathic pulmonary fibrosis (IPF), a chronic progressive lung disease of unknown etiology, is characterized by the expansion of myofibroblasts and abnormal deposition of extracellular matrix in the lung parenchyma. To elucidate the molecular mechanisms that lead to IPF, we analyzed myofibroblasts established from patients with IPF by oligonucleotide microarrays. Gene expression profiles revealed a novel pathophysiologic function of myofibroblasts as a generator of reactive oxygen species, and a self-defense mechanism against oxidative stress of their own generating. Experiment Overall Design: We isolated two myofibroblast cell culture from patients with idiopathic pulmonary fibrosis. Embryonic pulmonary fibroblast was used for the reference.
Project description:Idiopathic pulmonary fibrosis (IPF) is an untreatable fibrotic lung disease characterized by fibroblast proliferation and epithelial mesenchymal transition. Using miRNA expression microarrays we identified 96 differentially expressed miRNA in IPF lungs which included let-7d, miR-30 family, miR-29 family and miR-154 family. Lung tissue samples for microarray analysis were obtained through the University of Pittsburgh Health Sciences Tissue Bank. 13 samples were obtained from surgical remnants of biopsies or lungs explanted from patients with IPF who underwent pulmonary transplant, and 12 control normal lung tissues obtained from the disease free margins with normal histology of lung cancer resection specimens. The morphologic diagnosis of IPF was based on typical microscopic findings consistent with usual interstitial pneumonia. Total RNA was labeled with Cy3 and hybridized on Agilent 8X15K microRNA array (Agilent Technologies, Santa Clara, CA). After 20 hours hybridization, arrays were washed and scanned according to the manufacturer’s protocol.
Project description:Visium (10x Genomics) spatially resolved transcriptomics data generated from normal and Idiopathic Pulmonary Fibrosis (IPF) lung parenchyma tissues collected from human donors. The fresh-frozen tissues that were analyzed were from four healthy control (HC) subjects and from four IPF patients. For each IPF patient, three different tissues were selected representing areas of mild (“B1”), moderate (“B2\") or severe (“B3”) fibrosis within the same donor, as determined by histological inspection of Hematoxylin and Eosin (H&E)-stained samples. Data from a total of 25 tissue sections, from 16 unique lung tissue blocks. The lung tissues were collected post-mortem (HC donors) or during lung transplant/resection (IPF patients) after obtaining informed consent. The study protocols were approved by the local human research ethics committee (HC: Lund, permit number Dnr 2016/317; IPF: Gothenburg, permit number 1026-15) and the samples are anonymized and cannot/should not be traced back to individual donors.
Project description:Analysis of gene expression of lung fibroblasts seeded onto decellularized extracellular matrix (ECM). Experiment had 2x2 design where fibroblasts from idiopathic pulmonary fibrosis (IPF) or control patients were seeded onto decelluarized lung tissue from IPF or control patients allowing for determination of gene expression differences that were driven by IPF ECM and which differences were driven by the IPF fibroblast. Lung fibroblasts from 5 patients with idiopathic pulmonary fibrosis and 5 control patients were cultured on decellularized ECM from IPF or control lung. Total RNA and polyribosome RNA were isolated after the cells were cultured on the decellularized ECM for 18 hours. When possible, a control cell line and a diseased cell line were cultured (and processed) simultaneously to minimize the effect of experimental variance induced by running the experiment at different times.Samples with the same batch number (provied in the sample 'characteristics' field) were cultured and processed at the same time.
Project description:Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrosing interstitial lung disease that is unresponsive to current therapy. While it carries a median survival of less than 3 years its rate of progression varies widely between patients. We hypothesized that studying the gene expression profiles of physiologically stable patients and those in which the disease progressed rapidly after the initial diagnosis would aid in the search for biomarkers and contribute to the understanding of disease pathogenesis. We generated 12 Idiopathic Pulmonary Fibrosis (IPF) lung parenchyma SAGE profiles. Initial cluster analysis including 8 other public available lung SAGE libraries verified that the IPF transcriptome is distinct from normal lung tissue and other lung diseases like COPD. In order to identify candidate markers of disease progression we segregated the IPF SAGE profiles in two groups based on clinical parameters regarding lung volume and lung function.