SNP microarray based 24 chromosome aneuploidy screening demonstrates that cleavage stage FISH poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts
Ontology highlight
ABSTRACT: Preimplantation genetic diagnosis (PGD) of aneuploidy by fluorescence in situ hybridisation (FISH) has not delivered the expected clinical benefit. Many previous re-analysis studies of embryos deemed aneuploid by FISH on day 3 have found a high degree of chromosomal normalcy at the blastocyst stage. While most have interpreted this as “self correction,” there remains a lack of evidence for such a phenomenon. A more comprehensive technique for 24 chromosome aneuploidy screening was utilised here to re-evaluate blastocysts previously diagnosed as abnormal by FISH and investigate possible self correction mechanisms, including extrusion or duplication of aneuploid chromosomes resulting in uniparental isodisomy (UPID), and preferential segregation of aneuploidy to the trophectoderm (TE). Embryos that developed to a morphologically normal blastocyst after an aneuploidy diagnosis by cleavage stage FISH were biopsed into 4 sections, 3 TE and 1 inner cell mass (ICM), and randomised for evaluation by single nucleotide polymorphism (SNP) microarray based 24 chromosome aneuploidy screening (MA-PGD). Fifty-eight percent of blastocysts were euploid for all 24 chromosomes despite an aneuploid FISH result on day 3. Only 18% were consistent with the original FISH diagnosis, while the remaining 24% identified abnormalities that were different from the original FISH diagnosis. Abnormalities did not preferentially segregate to the TE and aneuploid chromosome extrusion or duplication resulting in UPID did not occur. Cleavage stage FISH is poorly predictive of aneuploidy in an embryo that develops into a morphologically normal blastocyst. Clinicians should consider re-evaluating embryos diagnosed as aneuploid by FISH that form morphologically normal blastocysts using a validated comprehensive 24 chromosome aneuploidy screening method.
ORGANISM(S): Homo sapiens
PROVIDER: GSE18932 | GEO | 2010/05/19
SECONDARY ACCESSION(S): PRJNA121043
REPOSITORIES: GEO
ACCESS DATA