Differential regulation of immune-related genes in the developing heart.
Ontology highlight
ABSTRACT: In many congenital heart defects, it can be difficult to ascertain primary pathology from secondary consequences from altered flow through the developing heart. The molecular differences between the growing right and left ventricles (RV and LV, respectively) following the completion of septation and the impact of sex on these mechanisms have not been investigated. We analyzed RNA-seq data derived from twelve RV and LVs, one with Hypoplastic Left Heart Syndrome (HLHS), to compare the transcriptomic landscape between the ventricles during development. Differential gene expression analysis revealed a large proportion of genes unique to either the RV or LV as well as sex bias. Our GO enrichment and network analysis strategy highlighted the differential role of immune functions between the RV and LV in the developing heart. Comparatively, RNA-seq analysis of data from C57Bl6/J mice hearts collected at E14 resulted in the enrichment of similar processes related to T cells and leukocyte migration and activation. Differential gene expression analysis of an HLHS case highlighted significant downregulation of chromatin organization pathways and upregulation of genes involved in muscle organ development. This analysis also identified previously unreported upregulation of genes involved in IL-17 production pathways. In conclusion, differences exist between the gene expression profiles of RV versus LV with the expression of immune-related genes significantly different between these two chambers. The pathogenesis of HLHS may involve alterations in the expression of chromatin and muscle gene organization as well as upregulation of the IL-17 response pathway.
ORGANISM(S): Homo sapiens
PROVIDER: GSE266980 | GEO | 2024/05/08
REPOSITORIES: GEO
ACCESS DATA