Project description:The conversion of 5-methylcytosine (5mC) into 5-Hydroxymethylcytosine (5hmC) by ten-eleven translocation (Tet) family has recently been identified as a key process for active DNA demethylation, whose effects in the immune response is currently unknown. We used microarrays to characterize the regulation of Tet2 in T cells. We found that deletion of the Tet2 gene in T cells decreased expression of effector cytokines such as IFN-?, IL-17, and IL-10. To analyze the regulation of Tet2 in Th subset differentation, CD2(Cre)Tet2(f/f) mice were used to derive Tet2-deficient Th1 and Th17 cells, and Tet2(f/f) mice were used for Tet2-enriched Th1 and Th17 cells.
Project description:The conversion of 5-methylcytosine (5mC) into 5-Hydroxymethylcytosine (5hmC) by ten-eleven translocation (Tet) family has recently been identified as a key process for active DNA demethylation, whose effects in the immune response is currently unknown. Examination of both 5mC and 5hmC modifications in 5 Th cell types. CD2(Cre)Tet2(f/f) mice (previously described in Moran-Crusio et al.,2011) and wild-type littermates on the mixed background were used in experiments.
Project description:The conversion of 5-methylcytosine (5mC) into 5-Hydroxymethylcytosine (5hmC) by ten-eleven translocation (Tet) family has recently been identified as a key process for active DNA demethylation, whose effects in the immune response is currently unknown.
Project description:The conversion of 5-methylcytosine (5mC) into 5-Hydroxymethylcytosine (5hmC) by ten-eleven translocation (Tet) family has recently been identified as a key process for active DNA demethylation, whose effects in the immune response is currently unknown. We used microarrays to characterize the regulation of Tet2 in T cells. We found that deletion of the Tet2 gene in T cells decreased expression of effector cytokines such as IFN-γ, IL-17, and IL-10.