Project description:Spliceostatin A (SSA) is a methyl ketal derivative of FR901464, a potent antitumor compound isolated from a culture broth of Pseudomonas sp no. 2663. These compounds selectively bind to the essential spliceosome component SF3b, a subcomplex of the U2 snRNP, to inhibit pre-mRNA splicing. However, the mechanism of SSA's antitumor activity is unknown. It is noteworthy that SSA causes accumulation of a truncated form of the CDK inhibitor protein p27 translated from CDKN1B pre-mRNA, which is involved in SSA-induced cell-cycle arrest. However, it is still unclear whether pre-mRNAs are uniformly exported from the nucleus following SSA treatment. We performed RNA-seq analysis on nuclear and cytoplasmic fractions of SSA-treated cells. Our statistical analyses showed that intron retention is the major consequence of SSA treatment, and a small number of intron-containing pre-mRNAs leak into the cytoplasm. Using a series of reporter plasmids to investigate the roles of intronic sequences in the pre-mRNA leakage, we showed that the strength of the 5' splice site affects pre-mRNA leakage. Additionally, we found that the level of pre-mRNA leakage is related to transcript length. These results suggest that the strength of the 5' splice site and the length of the transcripts are determinants of the pre-mRNA leakage induced by SF3b inhibitors.
Project description:The muscleblind-like (Mbnl) family of RNA-binding proteins plays important roles in muscle and eye development and in myotonic dystrophy (DM), in which expanded CUG or CCUG repeats functionally deplete Mbnl proteins. We identified transcriptome-wide functional and biophysical targets of Mbnl proteins in brain, heart, muscle, and myoblasts by using RNA-seq and CLIP-seq approaches. This analysis identified several hundred splicing events whose regulation depended on Mbnl function in a pattern indicating functional interchangeability between Mbnl1 and Mbnl2. A nucleotide resolution RNA map associated repression or activation of exon splicing with Mbnl binding near either 3' splice site or near the downstream 5' splice site, respectively. Transcriptomic analysis of subcellular compartments uncovered a global role for Mbnls in regulating localization of mRNAs in both mouse and Drosophila cells, and Mbnl-dependent translation and protein secretion were observed for a subset of mRNAs with Mbnl-dependent localization. These findings hold several new implications for DM pathogenesis.
Project description:The cellular transformation of a precursor mRNA (pre-mRNA) into its mature or functional form proceeds by way of a splicing reaction, in which the exons are ligated to form the mature linear RNA and the introns are excised as branched or lariat RNAs. We have prepared a series of branched compounds (bRNA and bDNA), and studied the effects of such molecules on the efficiency of mammalian pre-mRNA splicing in vitro. Y-shaped RNAs containing an unnatural L-2'-deoxycytidine unit (L-dC) at the 3' termini are highly stabilized against exonuclease hydrolysis in HeLa nuclear extracts, and are potent inhibitors of the splicing pathway. A bRNA containing internal 2'-O-methyl ribopyrimidine units and L-dC at the 3' ends was at least twice as potent as the most potent of the bRNAs containing no 2' modifications, with an IC50 of approximately 5 micro M. Inhibitory activity was maintained in a branched molecule containing an arabino-adenosine branchpoint which, unlike the native bRNAs, resisted cleavage by the lariat- debranching enzyme. The data obtained suggest that binding and sequestering of a branch recognition factor by the branched nucleic acids is an early event, which occurs prior to the first chemical step of splicing. Probably, an early recognition element preferentially binds to the synthetic branched molecules over the native pre-mRNA. As such, synthetic bRNAs may prove to be invaluable tools for the purification and identification of the putative branchpoint recognition factor.
Project description:The spliceosome mediates precursor mRNA splicing in eukaryotes, including the model organism Saccharomyces cerevisiae (yeast). Despite decades of study, no chemical inhibitors of yeast splicing in vivo are available. We have developed a system to efficiently inhibit splicing and block proliferation in living yeast cells using compounds that target the human spliceosome protein SF3B1. Potent inhibition is observed in yeast expressing a chimeric protein containing portions of human SF3B1. However, only a single point mutation in the yeast homolog of SF3B1 is needed for selective inhibition of splicing by pladienolide B, herboxidiene, or meayamycin in liquid culture. Mutations that enable inhibition also improve splicing of branch sites containing mismatches between the intron and small nuclear RNA-suggesting a link between inhibitor sensitivity and usage of weak branch sites in humans. This approach provides powerful new tools for manipulating splicing in live yeast and studies of spliceosome inhibitors.
Project description:Mutations in the serine/threonine kinase BRAF are found in more than 60% of melanomas. The most prevalent melanoma mutation is BRAF(V600E), which constitutively activates downstream MAPK signalling. Vemurafenib is a potent RAF kinase inhibitor with remarkable clinical activity in BRAF(V600E)-positive melanoma tumours. However, patients rapidly develop resistance to vemurafenib treatment. One resistance mechanism is the emergence of BRAF alternative splicing isoforms leading to elimination of the RAS-binding domain. Here we identify interference with pre-mRNA splicing as a mechanism to combat vemurafenib resistance. We find that small-molecule pre-mRNA splicing modulators reduce BRAF3-9 production and limit in-vitro cell growth of vemurafenib-resistant cells. In xenograft models, interference with pre-mRNA splicing prevents tumour formation and slows growth of vemurafenib-resistant tumours. Our results identify an intronic mutation as the molecular basis for a RNA splicing-mediated RAF inhibitor resistance mechanism and we identify pre-mRNA splicing interference as a potential therapeutic strategy for drug resistance in BRAF melanoma.
Project description:The RNase III enzyme Drosha is a key factor in microRNA (miRNA) biogenesis and as such indispensable for cellular homeostasis and developmental processes. Together with its co-factor DGCR8, it converts the primary transcript (pri-miRNA) into the precursor hairpin (pre-miRNA) in the nucleus. While the middle and the C-terminal domain are crucial for pri-miRNA processing and DGCR8 binding, the function of the N-terminus remains cryptic. Different studies have linked this region to the subcellular localization of Drosha, stabilization and response to stress. In this study, we identify alternatively spliced Drosha transcripts that are devoid of a part of the arginine/serine-rich (RS-rich) domain and expressed in a large set of human cells. In contrast to their expected habitation, we find two isoforms also present in the cytoplasm, while the other two isoforms reside exclusively in the nucleus. Their processing activity for pri-miRNAs and the binding to co-factors remains unaltered. In multiple cell lines, the endogenous mRNA expression of the Drosha isoforms correlates with the localization of endogenous Drosha proteins. The pri-miRNA processing efficiency is not significantly different between groups of cells with or without cytoplasmic Drosha expression. In summary, we discovered novel isoforms of Drosha with differential subcellular localization pointing toward additional layers of complexity in the regulation of its activity.
Project description:Originally the novel protein Blom7? was identified as novel pre-mRNA splicing factor that interacts with SNEV(Prp19/Pso4), an essential protein involved in extension of human endothelial cell life span, DNA damage repair, the ubiquitin-proteasome system, and pre-mRNA splicing. Blom7? belongs to the heteronuclear ribonucleoprotein K homology (KH) protein family, displaying 2 KH domains, a well conserved and widespread RNA-binding motif. In order to identify specific sequence binding motifs, we here used Systematic Evolution of Ligands by Exponential Enrichment (SELEX) with a synthetic RNA library. Besides sequence motifs like (U/A)(1-4) C(2-6) (U/A)(1-5), we identified an AC-rich RNA-aptamer that we termed AK48 (Aptamer KH-binding 48), binding to Blom7? with high affinity. Addition of AK48 to pre-mRNA splicing reactions in vitro inhibited the formation of mature spliced mRNA and led to a slight accumulation of the H complex of the spliceosome. These results suggest that the RNA binding activity of Blom7? might be required for pre-mRNA splicing catalysis. The inhibition of in-vitro splicing by the small RNA AK48 indicates the potential use of small RNA molecules in targeting the spliceosome complex as a novel target for drug development.
Project description:The intermediate filament network of astrocytes includes Glial fibrillary acidic protein (Gfap) as a major component. Gfap mRNA is alternatively spliced resulting in generation of different protein isoforms where Gfap? is the most predominant isoform. The Gfap? isoform is expressed in proliferating neurogenic astrocytes of the developing human brain and in the adult human and mouse brain. Here we provide a characterization of mouse Gfap? mRNA and Gfap? protein. RT-qPCR analysis showed that Gfap? mRNA and Gfap? mRNA expression is coordinately increased in the post-natal period. Immunohistochemical staining of developing mouse brain samples showed that Gfap? is expressed in the sub-ventricular zones in accordance with the described localization in the developing and adult human brain. Immunofluorescence analysis verified incorporation of Gfap? into the Gfap intermediate filament network and overlap in Gfap? and Gfap? subcellular localization. Subcellular mRNA localization studies identified different localization patterns of Gfap? and Gfap? mRNA in mouse primary astrocytes. A larger fraction of Gfap? mRNA showed mRNA localization to astrocyte protrusions compared to Gfap? mRNA. The differential mRNA localization patterns were dependent on the different 3'-exon sequences included in Gfap? and Gfap? mRNA. The presented results show that alternative Gfap mRNA splicing results in isoform-specific mRNA localization patterns with resulting different local mRNA concentration ratios which have potential to participate in subcellular region-specific intermediate filament dynamics during brain development, maintenance and in disease.
Project description:Tumor-predominant splice isoforms were identified during comparative in silico sequence analysis of EST clones, suggesting that global aberrant alternative pre-mRNA splicing may be an epigenetic phenomenon in cancer. We used an exon expression array to perform an objective, genome-wide survey of glioma-specific splicing in 24 GBM and 12 nontumor brain samples. Validation studies were performed using RT-PCR on glioma cell lines, patient tumor and nontumor brain samples.In total, we confirmed 14 genes with glioma-specific splicing; seven were novel events identified by the exon expression array (A2BP1, BCAS1, CACNA1G, CLTA, KCNC2, SNCB, and TPD52L2). Our data indicate that large changes (> 5-fold) in alternative splicing are infrequent in gliomagenesis (< 3% of interrogated RefSeq entries). The lack of splicing changes may derive from the small number of splicing factors observed to be aberrantly expressed.While we observed some tumor-specific alternative splicing, the number of genes showing exclusive tumor-specific isoforms was on the order of tens, rather than the hundreds suggested previously by in silico mining. Given the important role of alternative splicing in neural differentiation, there may be selective pressure to maintain a majority of splicing events in order to retain glial-like characteristics of the tumor cells.