Gene expression in endometrium and corpus luteum of Holstein cows selected for high and low fertility
Ontology highlight
ABSTRACT: Our hypothesis was that genes differentially expressed in the endometrium and corpus luteum on day 13 of the estrous cycle between cows with either good or poor genetic merit for fertility would be enriched for genetic variants associated with fertility. We combined a unique genetic model of fertility (cattle which have been selected for high and low fertility and show substantial difference in fertility), with gene expression data from these cattle, and genome-wide association study (GWAS) results in ~20,000 cattle, to identify quantitative trait loci (QTL) regions and sequence variants associated with genetic variation in fertility.
Project description:Lactation and associated metabolic stresses during the post-partum period have been shown to impair fertility in dairy cows. The oviduct plays key roles in embryo development and the establishment of pregnancy in cattle. The aim of this study was to investigate the effects of lactation and location relative to the corpus luteum (CL) on the transcriptome of the bovine oviduct epithelium.
Project description:Although rescue of the corpus luteum is required for pregnancy, luteal function during maternal recognition of pregnancy remains largely unexplored. CL were collected from pregnant cattle on days 14, 17, 20, and 23, to encompass the maternal recognition of pregnancy period. Nanostring technology was used to profile miRNA. A total of 27 miRNA changed. MiRNA that increased were predicted to inhibit phosphatidylinositol signaling, while those that decreased may be negative regulators of steroidogenesis. Overall, these data indicate that there are changes in the CL of pregnancy that are important for continued luteal function.
Project description:Recently, microRNAs (miRNAs) have emerged as new players in the fine tuning of some reproductive functions in mammals via posttranscriptional gene regulation mechanisms. Importantly, miRNAs have been suggested to be an important regulators of various ovarian functions. Applying custom made multispecies arrays we aimed to analyze expression profile of miRNAs in corpus luteum to answer the question whether miRNAs can be involved in maintenance of luteal function during early pregnancy in pigs.
Project description:Although rescue of the corpus luteum is required for pregnancy, luteal function during maternal recognition of pregnancy remains largely unexplored. CL were collected from pregnant cattle on days 14, 17, 20, and 23, to encompass the maternal recognition of pregnancy period. Next Generation Sequencing was used to profile mRNA abundance during this time, while tandem mass spectrometry and Nanostring technology were used to profile proteins and miRNA, respectively. A total of 1157 mRNA were differentially abundant. mRNA that increased were regulators of interferon signaling and DNA repair, while those that decreased were associated with luteolytic processes, such as calcium signaling and matrix metallopeptidase (MMP) signaling, indicating inhibition of these processes. mRNA that were maximally abundant on day 20 were primarily associated with immune processes. Overall, these data indicate that there are changes in the CL of pregnancy that are important for continued luteal function.
Project description:The corpus luteum plays a critical role in reproduction because it is the primary source of circulating progesterone. This study aimed to determine the in vitro effect of peroxisome proliferator-activated receptor gamma (PPARγ) ligands on the transcriptome genes expression in the porcine corpus luteum in the mid- and late-luteal phase of the estrous cycle using RNA-seq technology. The corpus luteum slices were incubated in vitro in the presence of PPARγ agonist – pioglitazone and antagonist—T0070907. We identified 40 differentially expressed genes after pioglitazone treatment and 40 after T0070907 treatment in the mid-luteal phase as well as 26 after pioglitazone and 29 after T0070907 treatment in late-luteal phase of the estrous cycle. In addition, we detected differences in genes expression between the mid- and late-luteal phase without treatment (409). These results should become a basis for further studies explaining the mechanism of PPARγ action in the reproductive system in pigs.
Project description:To investigate the rapid effects of PGF2α on the corpus luteum we performed gene expression profiling analysis using data obtained from RNA-seq of controls and treatments at two time points with 4 biological replicates/group .
Project description:The development of biomarkers of fertility could provide benefits for the genetic improvement of dairy cows. Circulating small extracellular vesicles (sEVs) show promise as diagnostic or prognostic markers since their cargo reflects the metabolic state of the cell of origin; thus, they mirror the physiological status of the host. Here, we employed data-independent acquisition mass spectrometry to survey the plasma and plasma sEV proteomes of two different cohorts of Young (Peripubertal; n = 30) and Aged (Primiparous; n = 20) dairy cows (Bos taurus) of high- and low-genetic merit of fertility and known pregnancy outcomes (ProteomeXchange dataset identifier PXD042891). We established predictive models of fertility status, with an area under the curve of 0.97 (sEV; p value = 3.302e-07) and 0.95 (plasma; p value = 6.405e-08). Biomarker candidates unique to high-fertility Young cattle had a sensitivity of 0.77 and specificity of 0.67 (*p = 0.0287). Low-fertility biomarker candidates uniquely identified in sEVs from Young and Aged cattle had a sensitivity and specificity of 0.69 and 1.0, respectively (***p = 0.0005). Our bioinformatics pipeline enabled quantification of plasma and circulating sEV proteins associated with fertility phenotype. Further investigations are warranted to validate this research in a larger population, which may lead to improved classification of fertility status in cattle.
Project description:Cavitary corpora lutea are commonly observed during the estrous cycle in bovines. Since the quality of the corpus luteum (CL) is extremely important during embryo transfer when embryos are implanted into the recipient, the ultrasonographic examination of the CL is becoming more and more important in terms of the outcome of the procedure. In the present study, a total of 2477 ultrasonographic transrectal diagnoses were performed, and data were collected between the years of 2018 and 2020 in a large-scale Holstein Friesian dairy farm in Hungary. In 91.1% (n = 2257) and in 8.9% (n = 220) of the cases, compact CLs and cavitary CLs, respectively, were diagnosed at pregnancy diagnosis. The presence of a cavitary CL on the ovary at pregnancy diagnosis increased the odds of remaining open after pregnancy by 21 times compared to the presence of a compact CL (OR = 21.0, p < 0.001) in the cows. The presence of cavitary CL was not influenced either by month or season. Ovarian cysts were detected in 196 cases (8.0%) in the examined animals. The presence of a cavitary CL decreased by 9 times when an ovarian cyst was also diagnosed (OR = 9.0, 1.6% vs. 9.5%, p < 0.001). The presence of an ovarian cyst decreased the odds of established pregnancy by 81 times (OR = 81.1, p < 0.001). Based on our results, the presence of a cavitary CL between days 31 and 42 after artificial insemination is associated with a smaller chance of conception in Holstein Friesian cows. The presence of an ovarian cyst decreases the occurrence of cavitary CL and the chance of conception.