Project description:We used microarrays to investigate gene expression changes in tumor-bearing Sca1-TOMATO-Lmo2 Nu/Nu mice Tumor-bearing bone marrows of three Sca1-TOMATO-Lmo2 Nu/Nu mice compared with bone marrow cells from four Control Nude mice and with thymus leukemic cells from ten Sca1-TOMATO-Lmo2 mice. GSM2209767 - GSM2209776 are re-analyses of GSE83570 (GSM2209749 - GSM220975 and GSM2209757 - GSM2209759).
Project description:We used microarrays to investigate gene expression changes in tumor-bearing Sca1-TOMATO-Lmo2 mice and in preleukemic cells from Sca1-TOMATO-Lmo2 mice. Tumor-bearing thymus of eleven Sca1-TOMATO-Lmo2 mice compared with thymus cells from 4 WT mice, with TOMATO-positive thymus preleukemic T cells from 5 Sca1-TOMATO-Lmo2 mice and with TOMATO-negative thymus preleukemic T cells from 5 Sca1-TOMATO-Lmo2 mice GSM2209749 - GSM220975 and GSM2209757 - GSM2209759 were re-analyzed by GSE83571 (GSM2209767 - GSM2209776).
Project description:We used microarrays to investigate gene expression changes in tumor-bearing Sca1-TOMATO-Lmo2 mice and in preleukemic cells from Sca1-TOMATO-Lmo2 mice.
Project description:Maintenance of hematopoietic stem cells (HSCs) in vitro has been believed to be difficult due to a lack of complete understanding of HSC quiescence maintained by the niche. Recent evidence suggests that in vitro maintenance of human and mouse long-term HSCs (LT-HSCs) is possible through dual inhibition (2i) of both GSK-3 and mTOR in the absence of cytokines, serum, or feeder cells.