Project description:Gene expression is regulated by controlling distinct steps of the transcriptional cycle, including initiation, pausing, elongation, and termination. Kinases phosphorylate RNA Polymerase II and associated factors to control transitions between these steps and act as central gene regulatory nodes. Similarly, phosphatases that dephosphorylate these components are emerging as important regulators of transcription, though their roles remain less well understood. Here we discover that the PNUTS-PP1 phosphatase complex plays an essential role in controlling transcription pause release in addition to its previously described function in transcription termination. Transcription pause release by the PNUTS complex is essential for almost all RNA Pol II-dependent gene transcription, relies on its PP1 phosphatase subunit, and controls the phosphorylation of factors required for pause release and elongation. Together, this reveals an essential new role for a phosphatase complex in transcription pause release and shows that the PNUTS complex is essential for RNA Poll II-dependent transcription.
Project description:The nuclear export of messenger RNAs (mRNAs) is intimately coupled to their synthesis. pre-mRNAs assemble into dynamic ribonucleoparticles as they are being transcribed, processed and exported. The role of ubiquitylation in this process is increasingly recognized as the ubiquitylation of many key players have been shown to affect mRNA nuclear export. While a few E3 ligases have been shown to regulate nuclear export, evidence for deubiquitylases is currently lacking. Here, we identified the deubiquitylase Ubp15 as a regulator of nuclear export in Saccharomyces cerevisiae. Ubp15 interacts both with RNA polymerase II and with the nuclear pore complex, and its deletion reverts the nuclear export defect of mutants of the E3 ligase Rsp5. The deletion of UBP15 leads to hyper-ubiquitylation of the main nuclear export receptor Mex67 and affects its association with THO, a complex coupling transcription to mRNA processing and involved in the recruitment of mRNA export factors to nascent transcripts. Collectively, our data support a role for Ubp15 in coupling transcription to mRNA export.
Project description:In this study, we identified the Arabidopsis RNA polymerase II C-terminal domain phosphatase-like protein, FIERY2 (FRY2, also known as CPL1), as a novel regulator of NMD.
Project description:RNA polymerase II (Pol II)-mediated transcription in metazoan requires precise regulation. RNA polymerase II-associated protein 2 (RPAP2) was previously identified to transport Pol II from cytoplasm to nucleus and dephosphorylates Pol II C-terminal domain (CTD). We found that RPAP2 binds hypo/hyper-phosphorylated Pol II with undetectable phosphatase activity. Structure of RPAP2-Pol II shows mutually exclusive assembly of RPAP2-Pol II and pre-initiation complex (PIC) due to three steric clashes. RPAP2 prevents/disrupts Pol II-TFIIF interaction and impairs in vitro transcription initiation, suggesting a function in prohibiting PIC assembly. Loss of RPAP2 in cells leads to global accumulation of TFIIF and Pol II at promoters, indicating critical role of RPAP2 in inhibiting PIC assembly independent of its putative phosphatase activity. Our study indicates that RPAP2 functions as a gatekeeper to prohibit PIC assembly and transcription initiation and suggests a novel transcription checkpoint.
Project description:RNA polymerase II (Pol II)-mediated transcription in metazoan requires precise regulation. RNA polymerase II-associated protein 2 (RPAP2) was previously identified to transport Pol II from cytoplasm to nucleus and dephosphorylates Pol II C-terminal domain (CTD). We found that RPAP2 binds hypo/hyper-phosphorylated Pol II with undetectable phosphatase activity. Structure of RPAP2-Pol II shows mutually exclusive assembly of RPAP2-Pol II and pre-initiation complex (PIC) due to three steric clashes. RPAP2 prevents/disrupts Pol II-TFIIF interaction and impairs in vitro transcription initiation, suggesting a function in prohibiting PIC assembly. Loss of RPAP2 in cells leads to global accumulation of TFIIF and Pol II at promoters, indicating critical role of RPAP2 in inhibiting PIC assembly independent of its putative phosphatase activity. Our study indicates that RPAP2 functions as a gatekeeper to prohibit PIC assembly and transcription initiation and suggests a novel transcription checkpoint.
Project description:RNA polymerase II (Pol II)-mediated transcription in metazoan requires precise regulation. RNA polymerase II-associated protein 2 (RPAP2) was previously identified to transport Pol II from cytoplasm to nucleus and dephosphorylates Pol II C-terminal domain (CTD). We found that RPAP2 binds hypo/hyper-phosphorylated Pol II with undetectable phosphatase activity. Structure of RPAP2-Pol II shows mutually exclusive assembly of RPAP2-Pol II and pre-initiation complex (PIC) due to three steric clashes. RPAP2 prevents/disrupts Pol II-TFIIF interaction and impairs in vitro transcription initiation, suggesting a function in prohibiting PIC assembly. Loss of RPAP2 in cells leads to global accumulation of TFIIF and Pol II at promoters, indicating critical role of RPAP2 in inhibiting PIC assembly independent of its putative phosphatase activity. Our study indicates that RPAP2 functions as a gatekeeper to prohibit PIC assembly and transcription initiation and suggests a novel transcription checkpoint.
Project description:RNA polymerase II is decreased on heat shock-induced genes when the CTD phosphatase Fcp1 is knocked down in Drosophila S2 cells. We examined transcriptionally-engaged Pol II genome-wide with GRO-seq to determine if other genes are similarly affected.