Project description:Trypanosome histone N-terminal sequences are very divergent from the other eukaryotes, although they are still decorated by post-translational modifications (PTMs). Here, we used a highly robust workflow to analyze histone PTMs in the parasite Trypanosoma cruzi using mass spectrometry-based data-independent acquisition (DIA). We adapted the workflow for the analysis of the parasite’s histone sequences by modifying the software EpiProfile 2.0, improving peptide and PTM quantification accuracy. This workflow could now be applied to the study of 141 T. cruzi modified histone peptides, which we used to investigate the dynamics of histone PTMs along the metacyclogenesis and the life cycle of T. cruzi.
Project description:A novel one-dimensional on-line pH gradient-eluted strong cation exchange (SCX)-nano-ESI-MS/MS method was developed for protein identification and tested with mixture of six standard proteins, total lysate of HuH7 and N2a cells, as well as membrane fraction of N2a cells. This method utilized an on-line nano-flow SCX column in a nano-LC system coupled with a nano-electrospray high-resolution mass spectrometer. Protein digests were separated on a nano-flow SCX column with a pH gradient and directly introduced into a mass spectrometer through nano-electrospray ionization. SCXLC-MS/MS showed identification capability for higher proportion of basic peptides compared to RPLC-MS/MS method, especially for histidine-containing peptides. Our SCXLC-MS/MS method is an excellent alternative method to the RPLC-MS/MS method for analysis of standard proteins, total cell and membrane proteomes.
Project description:RawTools is a software that provides parsing and quantification of raw Thermo Orbitrap mass spectrometer data. RawTools software was used to process a set of injections (n = 140) from a prepared HeLa digest that were analyzed on an Orbitrap Velos to get summarized instrument performance metrics for quality control.
Project description:RawTools is a software that provides parsing and quantification of raw Thermo Orbitrap mass spectrometer data. RawTools software was used to process a subset of injections (n = 10) from a prepared HeLa digest that were analyzed on an Orbitrap Velos to get instrument performance metrics.
Project description:Histone post-translational modifications (PTMs) play a critical role in chromatin regulation. It has been proposed that these PTMs form localized “codes” that are read by specialized domains (reader domains) in chromatin associated proteins (CAPs) to regulate downstream function. Substantial effort has been made to define [CAP - histone PTM] specificity, and in doing so to decipher the histone code. However, this has largely been done using a reductive approach of isolated reader domains and histone peptides, with the assumption that PTM readout is unaffected by any higher order considerations. Here we show that histone PTM specificity is in fact dependent on nucleosomal context, necessitating we re-define the ‘histone code’ concept and further interrogate it at the nucleosomal level.
Project description:Introduction: Autoreactivity to histones is a pervasive feature of several human autoimmune disorders including systemic lupus erythematosus (SLE). Specific post-translational modifications (PTMs) of histones within neutrophil extracellular traps (NETs) may potentially drive the process by which tolerance to these chromatin-associated proteins is broken. We hypothesized that NETs and their unique histone PTMs might be capable of inducing autoantibodies that target histones. Methods: We developed a novel and efficient method for the in vitro production, visualization, and broad profiling of histone-PTMs of human and murine NETs. We also immunized Balb/c mice with murine NETs and profiled their sera on autoantigen and histone peptide microarrays for evidence of autoantibody production to their immunogen. Results: We confirmed specificity toward acetyl-modified histone H2B as well as to other histone PTMs in sera from patients with SLE known to have autoreactivity against histones. We observed enrichment for distinctive histone marks of transcriptionally silent DNA during NETosis triggered by diverse stimuli. However, NETs derived from human and murine sources did not harbor many of the PTMs toward which autoreactivity was observed in patients with SLE or in MRL/lpr mice. Further, while murine NETs were weak autoantigens in vivo, there was only partial overlap in the IgG and IgM autoantibody profiles induced by vaccination of mice with NETs and those seen in patients with SLE. Conclusions: Isolated in vivo exposure to NETs is insufficient to break tolerance and may involve additional factors that have yet to be identified.
Project description:Histone post-translational modifications (PTMs) alter chromatin structure by promoting the interaction of chromatin-modifying complexes with nucleosomes. The majority of chromatin-modifying complexes contain multiple domains that preferentially interact with modified histones, leading to speculation that these domains function in concert to target nucleosomes with distinct combinations of histone PTMs. In S. cerevisiae, the NuA3 histone acetyltransferase complex contains three domains, the PHD finger in Yng1, the PWWP domain in Pdp3, and the YEATS domain in Taf14, which in vitro bind to H3K4 methylation, H3K36 methylation, and acetylated and crotonylated H3K9 respectively. However the relative in vivo contributions of these histone PTMs in targeting NuA3 is unknown. Here we show that in vivo H4K4 and H3K36 methylation, but not acetylated or crotonylated H3K9, recruit NuA3 to transcribed genes. Through genome-wide colocalization and by mutational interrogation, we demonstrate that the PHD finger of Yng1, and the PWWP domain of Pdp3 independently target NuA3 to H3K4 and H3K36 methylated chromatin respectively. In contrast, we find no evidence to support the YEATS domain of Taf14 functioning in NuA3 recruitment. Collectively our results suggest that the presence of multiple histone-PTM binding domains within NuA3, rather than restricting it to nucleosomes containing distinct combinations of histone PTMs, can serve to increase the range of nucleosomes bound by the complex. Interestingly however, the simple presence of NuA3 is insufficient to ensure acetylation of the associated nucleosomes, suggesting a secondary level of acetylation regulation that does not involve control of HAT-nucleosome interactions.
Project description:Introduction: Autoreactivity to histones is a pervasive feature of several human autoimmune disorders including systemic lupus erythematosus (SLE). Specific post-translational modifications (PTMs) of histones within neutrophil extracellular traps (NETs) may potentially drive the process by which tolerance to these chromatin-associated proteins is broken. We hypothesized that NETs and their unique histone PTMs might be capable of inducing autoantibodies that target histones. Methods: We developed a novel and efficient method for the in vitro production, visualization, and broad profiling of histone-PTMs of human and murine NETs. We also immunized Balb/c mice with murine NETs and profiled their sera on autoantigen and histone peptide microarrays for evidence of autoantibody production to their immunogen. Results: We confirmed specificity toward acetyl-modified histone H2B as well as to other histone PTMs in sera from patients with SLE known to have autoreactivity against histones. We observed enrichment for distinctive histone marks of transcriptionally silent DNA during NETosis triggered by diverse stimuli. However, NETs derived from human and murine sources did not harbor many of the PTMs toward which autoreactivity was observed in patients with SLE or in MRL/lpr mice. Further, while murine NETs were weak autoantigens in vivo, there was only partial overlap in the IgG and IgM autoantibody profiles induced by vaccination of mice with NETs and those seen in patients with SLE. Conclusions: Isolated in vivo exposure to NETs is insufficient to break tolerance and may involve additional factors that have yet to be identified. Serum samples from 20 systemic lupus erythematosis patients were run on the Human Epigenome Microarray Platform V1.0 (HEMP; a single-color platform), in order to profile their autoantibodies against a library of post-translationally modified histone peptides. These 20 samples were randomly selected from a larger cohort previously profiled (data not shown) on the Utz Lab Whole Protein Autoantigen Array V2.0 (a single-color platform), where 14 were histone-reactive and 6 were histone-nonreactive. Control sera from 9 healthy adults and a positive control comprising a mixture of autoimmune sera with defined reactivities, were also run on HEMP V1.0. Together, these samples comprise the data appearing in Figures 1 and S1 (IgG and IgM isotype reactivity profiles, respectively), identifying IgG reactivity to 9 peptides that significantly distinguish histone-reactive from -nonreactive sera among 96 peptides profiled. For data appearing in Figure 5, serum samples from a total of 6 Balb/c mice, consisting of two treatment groups, NETs (Neutrophil Extracellular Traps) and NETs + CRAMP (cathelicidin-related antimicrobial peptide) were collected monthly over a 3-month period, along with a zero time point. These samples were compared with a positive control consisting of serum collected from a MLR/lpr mice exhibiting lupus-like symptoms, and a negative control with no serum. The 0, 1 and 2 month time points were profiled on the Utz Lab Whole Protein Autoantigen Array V2.0 and are shown in Figure 5A-B, while the 1 and 3 month time points were profiled on HEMP V1.0 arrays and shown in Figure 5E. All samples were run once with no replicates.
Project description:Posttranslational modifications (PTMs) on histone proteins are a key source of regulation on chromatin through impacting genome organization and important cellular processes, including gene expression. These PTMs often arise from small metabolites and are thus impacted by cellular metabolism and environmental cues. One such class of metabolically regulated PTMs are histone acylations, which include histone acetylation, along with butyrylation, crotonylation, and propionylation. We asked whether histone acylations of intestinal epithelial cells (IECs) are regulated through the availability of short chain fatty acids (SCFAs), which are generated by the commensal microbiota in the intestinal lumen. We identified specific sites of butyrylation and propionylation on lysine 9 and 27 on histone H3. We demonstrate that these acylations are regulated by the microbiota, whereas histone butyrylation is additionally regulated by the metabolite tributyrin. Furthermore, we also identify tributyrin-regulated gene programs that correlate with histone butyrylation and demonstrate that histone butyrylation (H3K27bu) is associated with active gene regulatory elements and levels of gene expression. Together, our observations demonstrate a physiological setting in which previously uncharacterized histone acylations are dynamically regulated and associated with gene expression.