Project description:Two large-scale outbreaks of streptococcal toxic shock-like syndrome (STSLS) have revealed Streptococcus suis 2 (SS2) to be a severe, evolving pathogen in humans. We investigated the mechanism by which SS2 causes STSLS. The transcriptional regulator TstS up-regulated during experimental infection. Compared with the wild type 05ZY strain, the tstS deletion mutant (∆tstS) elicited reduced cytokine secretion in macrophages. In mice, tstS deletion decreased virulence, bacterial load, and cytokine production. Moreover, TstS expression in P1/7 strain led to induction of STSLS in the infected mice. This is noteworthy because although virulent, P1/7 does not normally induce STSLS. Through microarray-based comparative transcriptomics analysis, we found that TstS regulates multiple metabolism related genes and several virulence-related genes associated with immune evasion.
Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGen’s tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis
Project description:Streptococcus suis is an important emerging worldwide pig pathogen and zoonotic agent with rapid evolution of virulence and drug resistance. Licochalcone A, used in traditional Chinese medicine, exhibits antimicrobial, antioxidant and anti-inflammatory activities. Herein, a whole-genome DNA microarray was used to investigate the global transcriptional regulation of Streptococcus suis 05ZYH33 treated by subinhibitory concentration of licochalcone A. 132 genes were differentially regulated upon liochalcone A treatment, including 78 genes up-regulated and 54 genes down-regulated which included many central biological functions such as metabolism, transcription and translation. We tried to investigate the antimicrobial mechanism of licochalcone A in the aspect of bacterial cell cycle control. Our analysis indicated that licochalcone A might inhibit the growth of S. suis by controlling the replication initiation and cell division through amino acid metabolism.
Project description:Streptococcus suis is an important emerging worldwide pig pathogen and zoonotic agent with rapid evolution of virulence and drug resistance. Licochalcone A, used in traditional Chinese medicine, exhibits antimicrobial, antioxidant and anti-inflammatory activities. Herein, a whole-genome DNA microarray was used to investigate the global transcriptional regulation of Streptococcus suis 05ZYH33 treated by subinhibitory concentration of licochalcone A. 132 genes were differentially regulated upon liochalcone A treatment, including 78 genes up-regulated and 54 genes down-regulated which included many central biological functions such as metabolism, transcription and translation. We tried to investigate the antimicrobial mechanism of licochalcone A in the aspect of bacterial cell cycle control. Our analysis indicated that licochalcone A might inhibit the growth of S. suis by controlling the replication initiation and cell division through amino acid metabolism. A cDNA microarray imprinted with 2156 genes representing about 98% of Streptococcus suis serotype 2 genome was used for transcriptome analysis. For two-sample (reference vs. test) microarray hybridization, four independent bacterial cultures from each condition were prepared as biological replicates for RNA isolation. Four dual-fluorescence-labeled cDNA probes were prepared to hybridize with four slides, respectively. Pairwise comparisons were made using dye swaps to avoid labeling bias. A ratio of mRNA levels (test/reference) was calculated for each gene. Significant changes of gene expression were identified with the SAM software. After the SAM analysis, only genes with at least 2-fold changes in expression were collected for further analysis.
Project description:Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. In this study,we evaluated the genetic difference of 40 Streptococcus suis strains belonging to various sequence types by comparative genomic hybridization to identify genes associated with the variation in pathogenicity using NimbleGenM-bM-^@M-^Ys tilling microarray platform. Application of Comparative Phylogenomics to Identify Genetic Differences Relating to Pathogenicity of Streptococcus suis Comparative genomic analysis on the 40 S.suis strains of different serotypes and ST types through tilling arrays
Project description:The interactions of Streptocococcus suis (S.suis) with human microvascular endothelial cells (hBMEC) are important process for S.suis passage across human blood brain barrier (BBB). S.suis has evolved precise mechanisms to alter gene expression depending on the distinct challenges posed by particular disease sites. Herein, a whole-genome DNA microarray was used to investigate the change of gene expression profile of S.suis after contact with hBMEC 3 h. comparison of RNA isolated from hBMEC-associated S.suis with RNA derived from control bacteria revealed significant differential changes for 175 S.suis genes including 123 up-regulated genes and 52 down-regulated genes at 3 h post infection. A cDNA microarray imprinted with 2156 genes representing about 98% of Streptococcus suis serotype 2 genome was used for transcriptome analysis . For two-sample (reference vs. test) microarray hybridization, Two-condition experiment, control vs contact with hBMEC 3 h, four replicates (two biological replicates, two technical replicates) at each condition.
Project description:The interactions of Streptocococcus suis (S.suis) with human microvascular endothelial cells (hBMEC) are important process for S.suis passage across human blood brain barrier (BBB). S.suis has evolved precise mechanisms to alter gene expression depending on the distinct challenges posed by particular disease sites. Herein, a whole-genome DNA microarray was used to investigate the change of gene expression profile of S.suis after contact with hBMEC 1 h. comparison of RNA isolated from hBMEC-associated S.suis with RNA derived from control bacteria revealed significant differential changes for 219 S.suis genes including 131 up-regulated genes and 88 down-regulated genes at 1 h post infection. A cDNA microarray imprinted with 2156 genes representing about 98% of Streptococcus suis serotype 2 genome was used for transcriptome analysis . For two-sample (reference vs. test) microarray hybridization, Two-condition experiment, control vs contact with hBMEC 1 h, four replicates (two biological replicates, two technical replicates) at each condition.
Project description:Identification of Genes and Genomic Islands Correlated with High Pathogenicity through Tilling Microarray-Based Comparative Genomics in S. suis. Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. S. suis isolates have been categorized into groups of different levels of pathogenicity, with sequence type (ST) ST1 clonal complex strains having a higher degree of virulence than other STs. However, the genetic basis of the differences in pathogenicity is still poorly understood. In this study, a comprehensive genomic comparison of 31 S. suis strains from different clinical sources with the genome sequence of the high pathogenicity (HP) strain GZ1 was conducted using NimbleGen’s tilling microarray platform.