Adaptive responses of Pseudomonas aeruginosa to treatment with antibiotics
Ontology highlight
ABSTRACT: Circumventing or overwhelming the bacterial adaptation capabilities is key to combatting multidrug-resistant pathogens like Pseudomonas aeruginosa. In an effort to understand the physiological response of P. aeruginosa to clinically relevant antibiotics, we investigated the proteome after exposure to ciprofloxacin, levofloxacin, rifampicin, gentamicin, tobramycin, azithromycin, tigecycline, polymyxin B, colistin, ceftazidime, meropenem, and piperacillin/tazobactam. We further investigated the response to CHIR-90, which represents a promising class of lipopolysaccharide biosynthesis inhibitors currently under evaluation. Radioactive pulse-labeling of newly synthesized proteins followed by 2D-PAGE was used to monitor the acute response of P. aeruginosa to antibiotic treatment. Marker proteins were excised from non-radioactive gels and identified by mass spectrometry. The proteomic profiles provide insights into the cellular defense strategies for each antibiotic. A mathematical comparison of these response profiles based on upregulated marker proteins revealed similarities of responses to antibiotics acting on the same target area.
INSTRUMENT(S): Synapt MS
ORGANISM(S): Pseudomonas Aeruginosa Pao1
SUBMITTER: Christoph Senges
LAB HEAD: Julia E. Bandow
PROVIDER: PXD029948 | Pride | 2021-11-29
REPOSITORIES: Pride
ACCESS DATA