Interactome dynamics of RAF1-BRAF kinase monomers and dimers
Ontology highlight
ABSTRACT: RAF kinases play major roles in cancer. BRAFV600E mutants drive ~6% of human cancers. Potent kinase inhibitors exist but show variable effects in different cancer types, sometimes even inducing paradoxical RAF kinase activation. Both paradoxical activation and drug resistance are frequently due to enhanced dimerization between RAF1 and BRAF, which maintains or restores the activity of the downstream MEK-ERK pathway. Here, using quantitative proteomics we mapped the interactomes of RAF1 monomers, RAF1-BRAF and RAF1-BRAFV600E dimers identifying and quantifying >1,000 proteins. In addition, we examined the effects of vemurafenib and sorafenib, two different types of clinically used RAF inhibitors. Using regression analysis to compare different conditions we found a large overlapping core interactome but also distinct condition specific differences. Given that RAF proteins have kinase independent functions such dynamic interactome changes could contribute to their functional diversification. Analysing this dataset may provide a deeper understanding of RAF signalling and mechanisms of resistance to RAF inhibitors.
INSTRUMENT(S): Q Exactive
ORGANISM(S): Homo Sapiens (human)
TISSUE(S): Kidney Epithelium, Hek-293 Cell
SUBMITTER: Kieran Wynne
LAB HEAD: Walter Kolch
PROVIDER: PXD036792 | Pride | 2023-02-27
REPOSITORIES: Pride
ACCESS DATA