Project description:Desulfovibrio ferrophilus IS5 was incubated on indium-tin oxide (ITO) electrodes poised at −0.4 V and −0.5 V (versus standard hydrogen electrode) in H-type reactors for 10 days. Total RNA was extracted from cells after incubation, and RNA fragments were purified and transcribed into cDNA. cDNA was sequenced by NovaSeq 6000 System.
Project description:Identification of putative proteins of interest that are involved in cathodic electron uptake by the novel iron-corroding strain D. ferrophilus IS5
Project description:Microbiologically influenced corrosion (MIC) is recognized as a considerable threat to carbon steel asset integrity in the oil and gas industry. There is an immediate need for reliable and broadly applicable methods for detection and monitoring of MIC. Proteins associated with microbial metabolisms involved in MIC could serve as useful biomarkers for MIC diagnosis and monitoring. A proteomic study was conducted using a lithotrophically-grown bacteria Desulfovibrio ferrophilus strain IS5, which is known to cause severe electric MIC in seawater environments. Unique proteins, which are differentially and uniquely expressed during severe microbial corrosion by strain IS5, were identified. This includes the detection of a multi-heme cytochrome protein predicted to be involved in extracellular electron transfer in the presence of the carbon steel. Thus, we conclude that newly identified protein biomarker for MIC could be used to generate easy-to-implement immunoassays for reliable detection of microbiological corrosion in the field.
2021-07-30 | PXD026513 | Pride
Project description:Transcriptomic analysis of Desulfovibrio ferrophilus strain IS5
Project description:RNA-sequencing (transcriptome analysis) of Desulfovibrio ferrophilus IS5 conducting electron uptake from electrodes at different potentials
Project description:Investigation of partial genome gene expression level changes in a Desulfovibrio africanus during exponential and stationary phase growth in the presence and absence of 5 ug/L Hg2+ (as HgNO3). Desulfovibrio africanus is a known mercury methylating bacteria A 3 chip study using total RNA recovered from three separate cultures of Desulfovibrio africanus with 5 ug/L Hg during exponential phase growth, three seperate cultures of Desulfovibrio africanus with 5 ug/L Hg during stationary phase growth, three cultures of Desulfovibrio africanus without Hg during exponential phase growth, and Desulfovibrio africanus without Hg during stationary phase growth. Each chip measures the expression level of 4,585 genes and intergenic regions from Desulfovibrio africanus strain Walvis Bay on a custom Nimblegen format with 75-mer probes with tiled in 4-plex format.
Project description:Investigation of partial genome gene expression level changes in a Desulfovibrio africanus during exponential and stationary phase growth in the presence and absence of 5 ug/L Hg2+ (as HgNO3). Desulfovibrio africanus is a known mercury methylating bacteria
Project description:The syntrophic growth of strain 195 with Desulfovibrio vulgaris Hildenborough (DVH) and/or Methanobacterium congolense (MC) enhanced TCE dechlorination process by faster dechlorination rate and more robust growth. Transcriptomes of strain 195 grown in isolation, co- and tri-cultures were obtained by microarray experiments to find out the differential expressed genes corresponding to the syntrophic growth. Thus we can better understand the role of DVH and MC within this syntrophy.