Project description:Uveal melanoma (UM) with an inflammatory phenotype, characterized by infiltrating leukocytes and increased human leukocyte antigen (HLA) expression, carry an increased risk of death due to metastases. These tumors shoud be ideal for T-cell based therapies, yet it is not clear why prognostically-infaust tumors have a high HLA expression. We set out to determine whether the level of HLA molecules in UM is associated with other genetic factors, HLA transcriptional regulators, or microenvironmental factors. 28 enucleated UM were used to study HLA class I and II expression, and several regulators of HLA by immunohistochemistry, PCR microarray, qPCR and chromosome SNP-array. Fresh tumor samples of eight primary UM and four metastases were compared to their corresponding xenograft in SCID mice, using a PCR microarray and SNP array. Increased expression levels of HLA class I and II showed no dosage effect of chromosome 6p, but, as expected, were associated with monosomy of chromosome 3. Increased HLA class I and II protein levels were positively associated with their gene expression and with raised levels of the peptide-loading gene TAP1, and HLA transcriptional regulators IRF1, IRF8, CIITA, and NLRC5, revealing a higher transcriptional activity in prognostically-bad tumors. Implantation of fresh human tumor samples into SCID mice led to a loss of infiltrating leukocytes, and to a decreased expression of HLA class I and II genes , and their regulators. Our data provides evidence for a proper functioning HLA regulatory system in UM, offering a target for T-cell based therapies. NB: Here we show the PCR microarray (Illumina array).
Project description:We interrogated the transcriptome from bulk-sorted T1D donor β-cells as compared to non-diabetic donors. We found β-cells also expressed mRNA for HLA Class II and Class II antigen presentation pathway components, but not a macrophage marker.
Project description:Gene expression analysis of molecules with known function in HLA class II antigen processing and presentation. Various hematopoietic cell types and (cytokine pre-treated) non-hematopoietic cells that are targeted in Graft-versus-Leukemia reactivity and Graft-versus-Host Disease were collected. Expression was compared between the different hematopoietic and non-hematopoietic cell types for the Invariant chain, HLA-DMA, HLA-DMB, HLA-DOA and HLA-DOB genes. The data show that the Invariant chain, HLA-DMA, HLA-DMB and HLA-DOA genes are expressed in all or the majority of cell types with HLA class II surface expression, whereas expression of the HLA-DOB gene is restricted to professional antigen presenting B-cells and mature dendritic cells.
Project description:Gene expression analysis of molecules with known function in HLA class II antigen processing and presentation. Various hematopoietic cell types and (cytokine pre-treated) non-hematopoietic cells that are targeted in Graft-versus-Leukemia reactivity and Graft-versus-Host Disease were collected. Expression was compared between the different hematopoietic and non-hematopoietic cell types for the Invariant chain, HLA-DMA, HLA-DMB, HLA-DOA and HLA-DOB genes. The data show that the Invariant chain, HLA-DMA, HLA-DMB and HLA-DOA genes are expressed in all or the majority of cell types with HLA class II surface expression, whereas expression of the HLA-DOB gene is restricted to professional antigen presenting B-cells and mature dendritic cells. Total RNA was isolated from various hematopoietic cell types isolated (and cultured) from (G-CSF mobilized) peripheral blood from five different individuals and from (IFN-g pre-treated) fibroblasts cultured from skin biopsies from four different patients transplanted with allogeneic hematopoietic stem cells.
Project description:Genome wide association studies of schizophrenia encompassing the major histocompatibility locus (MHC) were highly significant following genome wide correction. This broad region implicates many genes including the MHC complex class II. Within this interval we examined the expression of two MHC II genes (HLA-DPA1 and HLA-DRB1) in brain from individual subjects with schizophrenia (SZ), bipolar disorder (BD), major depressive disorder (MDD), and controls by differential gene expression methods. A third MHC II mRNA, CD74, was studied outside of the MHC II locus, as it interacts within the same immune complex. HLA-DPA1 and CD74 were both reduced in hippocampus, amygdala, and dorsolateral prefrontal cortex regions in SZ and BD compared to controls by specific qPCR assay. We found several novel HLA-DPA1 mRNA variants spanning HLA-DPA1 exons 2-3-4 as suggested by an exon microarray study. The intronic rs9277341 SNP was a significant cis expression quantitative trait locus (eQTL) that was associated with the total expression of HLA-DPA1 in five brain regions. A biomarker study of MHC II mRNAs was conducted in SZ, BD, MDD, and control lymphoblastic cell lines (LCL) by qPCR assay of 87 subjects. There was significantly decreased expression of HLA-DPA1 and CD74 in BD, and trends for reductions in SZ in LCLs. The discovery of multiple splicing variants in brain for HLA-DPA1 is important as the HLA-DPA1 gene is highly conserved, there are no reported splicing variants, and the functions in brain are unknown. Future work on the function and localization of MHC Class II proteins in brain will help to understand the role of alterations in neuropsychiatric disorders. The HLA-DPA1 eQTL is located within a large linkage disequilibrium block that has an irrefutable association with schizophrenia. Future tests in a larger cohort are needed to determine the significance of this eQTL association with schizophrenia. Our findings support the long held hypothesis that alterations in immune function are associated with the pathophysiology of psychiatric disorders. There were 20 anterior cingulate postmortem brain samples that were extracted for total RNA, and analyzed using Affymetrix Exon Array (bipolar disorder subjects n = 9, controls n = 11).