Project description:Comparison of gene expression for individuals affected with FCHL exhibiting the USF1 susceptibility haplotype and FCHL affected indiviuals carrying the protective haplotype Keywords: ordered
Project description:Rapid advances in biochemical technologies have enabled several strategies for typing candidate HLA alleles, but linking them into a single MHC haplotype structure remains challenging. Here we have developed a multi-loci haplotype phasing technique and demonstrate its utility towards phasing of MHC and KIR loci in human samples. We accurately (~99%) reconstruct the complete haplotypes for over 90% of sequence variants spanning the 4-megabase region of these two loci. By haplotyping a majority of coding and non-coding alleles at the MHC and KIR loci in a single assay, this method has the potential to assist transplantation matching and facilitate investigation of the genetic basis of human immunity and disease. Complete haplotype phasing of 2 loci (MHC and KIR) in 1 human cell line.
Project description:To explore the effect of human MHC haplotype on gene expression phenotype across the MHC, we examine the MHC transcriptomic landscape at the haplotype-specific resolution for three prominent MHC haplotypes (A2-B46-DR9, A33-B58-DR3 and A1-B8-DR3) derived from the RNA-sequencing of MHC-homozygous B-LCLs. We demonstrate that MHC-wide gene expression pattern is dictated by the underlying MHC haplotype and identify 37 differentially expressed genes among the haplotypes.
Project description:Comparison of gene expression for individuals affected with FCHL exhibiting the USF1 susceptibility haplotype and FCHL affected indiviuals carrying the protective haplotype
Project description:N6-Methyladenosine (m6A) in mRNA regulates almost every stage in the mRNA life cycle, and the development of the high throughput detection of methylated sites in mRNA using MeRIPSeq or miCLIP revolutionized the m6A research field. Both methods are based on immunoprecipitation of fragmented mRNA. However, it is well documented that antibodies often have nonspecific activities, thus verification of identified m6A sites using an antibody-independent method would be highly desirable. Currently such approaches are limited. Here we present RedBaron, an improved biochemical method for the site-specific detection and quantification of m6A in RNA. We demonstrate that the RedBaron method is able to accurately quantify m6A levels at specific transcripts in vivo. We used this assay for the site-specific detection and quantification of m6A within the chicken β-actin (ACTB) zipcode sequence in chicken embryos and in fibroblast cells. We demonstrate that methylation of this site in the β-actin zipcode enhances ZBP1 binding in vitro, whilst methylation of a nearby adenosine abolishes
Project description:Rapid advances in biochemical technologies have enabled several strategies for typing candidate HLA alleles, but linking them into a single MHC haplotype structure remains challenging. Here we have developed a multi-loci haplotype phasing technique and demonstrate its utility towards phasing of MHC and KIR loci in human samples. We accurately (~99%) reconstruct the complete haplotypes for over 90% of sequence variants spanning the 4-megabase region of these two loci. By haplotyping a majority of coding and non-coding alleles at the MHC and KIR loci in a single assay, this method has the potential to assist transplantation matching and facilitate investigation of the genetic basis of human immunity and disease.
Project description:Rapid advances in high-throughput DNA sequencing technologies are accelerating the pace of research into personalized medicine. While methods for variant discovery and genotyping from whole genome sequencing (WGS) datasets have been well established, linking variants together into a single haplotype remains a challenge. An understanding of complete haplotypes of an individual will help clarify the consequences of inheriting multiple alleles in combination, identify novel disease associations, and augment studies of gene regulation. Although numerous methods have been developed to reconstruct haplotypes from WGS data, chromosome-span haplotypes at high resolution have been difficult to obtain. Here we present a novel method to accurately reconstruct chromosome-span haplotypes from proximity-ligation and DNA shotgun sequencing. We demonstrate the utility of this approach in producing high-resolution chromosome-span haplotype phasing in mouse and human. While proximity-ligation based methods were originally designed to investigate spatial organization of the genome, our results lend support for their use as a general tool for haplotyping in the future.
Project description:Rapid advances in high-throughput DNA sequencing technologies are accelerating the pace of research into personalized medicine. While methods for variant discovery and genotyping from whole genome sequencing (WGS) datasets have been well established, linking variants together into a single haplotype remains a challenge. An understanding of complete haplotypes of an individual will help clarify the consequences of inheriting multiple alleles in combination, identify novel disease associations, and augment studies of gene regulation. Although numerous methods have been developed to reconstruct haplotypes from WGS data, chromosome-span haplotypes at high resolution have been difficult to obtain. Here we present a novel method to accurately reconstruct chromosome-span haplotypes from proximity-ligation and DNA shotgun sequencing. We demonstrate the utility of this approach in producing high-resolution chromosome-span haplotype phasing in mouse and human. While proximity-ligation based methods were originally designed to investigate spatial organization of the genome, our results lend support for their use as a general tool for haplotyping in the future. Hi-C experiments in two replicates of Human GM12878 Lymphoblastoid cells and two replicates of F123 mouse ES cells (4 total samples)