Project description:The serum samples from wild type mice fed high-fat diet for 12 weeks (WT_Serum) and Mdm2 adipocyte-specific knock-in mice fed high-fat diet for 12 weeks (KI_Serum) were mixed separately, and subjected to proteomic study by Label-free quantitative techniques and mass spectrometry-based proteomics techniques in Jingjie PTM BioLab (Hangzhou) Co. Ltd (www.ptm-biolab.com.cn). The difference was determined by 1.5-fold-change criterion, FDR < 0.01.
Project description:The epididymal adipose tissue (eWAT) samples from wild type mice fed high-fat diet for 12 weeks (H_WT_E) and Mdm2 adipocyte-specific knock-in mice fed high-fat diet for 12 weeks (H_KI_E) were mixed separately, and subjected to proteomic study by Label-free quantitative techniques and mass spectrometry-based proteomics techniques, etc. The proteomics of mixed eWAT samples were performed in Jingjie PTM BioLab (Hangzhou) Co. Ltd (www.ptm-biolab.com.cn). The difference was determined by 1.5-fold-change criterion, FDR < 0.01.
Project description:The composition of the diet affects many processes in the body, including body weight and endocrine system. We have previously shown that dietary fat also affects the immune system. Mice fed high fat diet rich in polyunsaturated fatty acids survive S. aureus infection to a much greater extent than mice fed high fat diet rich in saturated fatty acids. Here we present data regarding the dietary effects on protein expression in spleen from mice fed three different diets, I) low fat/chow diet (LFD, n=4), II) high fat diet rich in saturated fatty acids (HFD-S, n=4) and III) high fat diet rich in polyunsaturated fatty acids (HFD-P, n=4). We performed mass spectrophotometry based quantitative proteomics analysis of isolated spleen by implementing the isobaric tags for relative and absolute quantification (iTRAQ) approach. Mass spectrometry data were analysed using Proteome Discoverer 2.4 software using the search engine mascot against Mus musculus in SwissProt. 924 proteins are identified in all sets (n=4) for different dietary effects taken for statistical analysis using Qlucore Omics Explorer software. Only 20 proteins were found to be differentially expressed with a cut-off value of false discovery rate < 0.1 (q-value) when comparing HFD-S and HFD-P but no differentially expressed proteins were found when LFD was compared with HFD-P or HFD-S. We identified a subset of proteins that showed an inverse expression pattern between two high fat diets. These differentially expressed proteins were further classified by gene ontology for their role in biological processes and molecular functions.
Project description:Expression of genes related to fibrosis was assessed in the liver of AIM+/+ and AM-/- mice fed a high-fat diet (HFD) for various period. Overall, there was no significant difference in the magnitude of expression of fibrosis-related genes during the steatosis progression.
Project description:Proteomics of liver tissue from mice fed a high fat diet (HFD) or regular chow diet. Data accompany our paper entitled “Dynamic Regulation of N6,2′-O-dimethyladenosine (m6Am) in Obesity” scheduled for publication in Nature Communications, 2021
Project description:The epididymal adipose tissue (eWAT) samples from wild type mice fed high-fat diet for 12 weeks (H_WT_E) and Mdm2 adipocyte-specific knock-in mice fed high-fat diet for 12 weeks (H_KI_E) were mixed separately, and subjected to ubiquitinome study by Label-free quantification and ubiquitination modification enrichment techniques, etc. The proteomics of mixed eWAT samples were performed in Jingjie PTM BioLab (Hangzhou) Co. Ltd (www.ptm-biolab.com.cn). The difference was determined by 1.5-fold-change criterion, FDR < 0.01.
Project description:High fat diet can lead to metabolic diseases such as obesity and diabetes known to be chronic inflammatory diseases with high prevalence worldwide. Recent studies have reported cognitive dysfunction in obese patients is caused by a high fat diet. Accordingly, such dysfunction is called “type 3 diabetes” or “diabetic dementia.” Although dysregulation of protein-coding genes has been extensively studied, profiling of non-coding RNAs including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) has not been reported yet. Therefore, the objective of this study was to obtain profiles of diverse RNAs and determine their patterns of alteration in high fat fed brain cortex compared to normal brain cortex. To investigate regulatory roles of both coding and non-coding RNAs in high fat diet brain, we performed RNA sequencing of ribosomal RNA-depleted RNAs and identified genome-wide lncRNAs and circRNAs expression and co-expression patterns of mRNAs in high fat diet mouse brain cortex. Our results showed expression levels of mRNAs related to neurogenesis, synapse, and calcium signaling were highly changed in high fat diet fed cortex. In addition, numerous differentially expressed lncRNAs and circRNAs were identified. Our study provides valuable expression profiles and potential function of both coding and non-coding RNAs in high fat diet fed brain cortex.
Project description:Expression of genes related to fibrosis was assessed in the liver of AIM+/+ and AM-/- mice fed a high-fat diet (HFD) for various period. Overall, there was no significant difference in the magnitude of expression of fibrosis-related genes during the steatosis progression. AIM+/+ and AIM-/- mice were fed an HFD for 0, 12 or 20 weeks. Liver samples were homogenized with Trizol, and total RNA was extracted according to the manufacturer's instructions. Microarray experiments were performed using Mouse Genome 430 2.0 Arrays (Affymetrix).
Project description:The popularity of high fat foods in modern society has been associated with epidemic of various metabolic diseases characterized by insulin resistance, the pathology of which involves complex interactions between multiple tissues such as liver, skeletal muscle and white adipose tissue (WAT). To uncover the mechanism by which excessive fat impairs insulin sensitivity, we conducted a multi- tissue study by using TMT-based quantitative proteomics. 3-week-old ICR mice were fed with high fat diet (HFD) for 19 weeks to induce insulin resistance. Liver, skeletal muscle and epididymal fat were collected for proteomics screening. Additionally, PRM was used for validating adipose differential proteins. By comparing tissue-specific protein profiles of HFD mice, multi-tissue regulation of glucose and lipid homeostasis and corresponding underlying mechanisms was systematically investigated and characterized. NC: normal birth weight + chow diet; NH: normal birth weight + high fat diet; LC: low birth weight + chow diet; LH: low birth weight + high fat diet.