Project description:Chromosomal inversions play a fundamental role in evolution and have been shown to be responsible for the epidemiologically important traits in malaria mosquitoes. However, they have never been characterized in the major vector of arboviruses Aedes aegypti because of the poor structure of its polytene chromosomes. In this study, we applied a Hi-C proximity ligation approach to identify chromosomal inversions in 23 recently collected strains of Ae. aegypti from its worldwide distribution, two old laboratory colonies, and Ae. mascarensis.
Project description:Wolbachia is a vertically transmitted intracellular bacteria that infect most than 60% of insect species. The strains wMelPop and wMel were introduced in the dengue virus vector Aedes aegypti, naturally not infected by Wolbachia. Recently, it was shown that those two strains inhibit dengue virus replication into their new host, A. aegypti (Moreira et al. 2009 and Walker et al. in preparation). The aim of this project is to look at the transcriptional response of Aedes aegypti to infection with wMel and wMelPop and try to find some genes or pathway potentially involved in the viral interference.Four laboratory lines of A. aegypti were used throughout this study. The PGYP1 and Mel2 lines were generated by transinfection with wMelPop and wMel strains respectively. PGYP1.tet and Mel2tet lines were treated with the antibiotic tetracycline and cured from Wolbachia infection (McMeniman et al., 2009 and Walker et al in preparation). The Mosquitoes were reared under standard laboratory conditions (26 ± 2 °C, 12:12 light/dark cycle, 75% relative humidity). Mosquito larvae were fed 0.1mg/larvae of TetraMin Tropical Tablets once a day. Adults were transferred to cages (measuring 30 x 30 x 30 cm) at emergence at 400 individuals per cage. Adults were supplied with a basic diet of 10% sucrose solution (Turley et al., 2009).
Project description:Aedes aegypti is a vector of many infectious agents, including flaviviruses like Zika virus. We demonstrate that Nest1, a 34kDa mosquito salivary protein, facilitates Zika virus dissemination in human skin explants. Our aim was to analyze the effect of Nest1 at a transcriptomic level (RNAseq) in human skin explants, in the presence and absence of virus (ZIKV), at different timepoints (day 1, 2,3 ,and 4)
Project description:Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in south America. The virus is transmitted mainly by the mosquito Aedes aegypti that also vectors dengue virus. Considering rather recent rapid spread of the virus and its declaration as a global health emergency by the World Health Organization, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole Ae. aegypti mosquitoes in response to ZIKV infection at 2, 7 and 14 days post-infection using deep sequencing. Results showed a large number of transcripts were altered at each time point following infection, but 18 transcripts were commonly changed at the three time points. The outcomes provide a basic understanding of Ae. aegypti responses to ZIKV and help determining host factors involved in replication or anti-viral response against the virus.
Project description:Two different strains of Aedes aegypti mosquito, Moyo-in-dry and Moyo-S, are profiled for their response through time to infection with Dengue 2 virus. Expression is measured using a two-colour custom spotted cDNA array. A mixed strain uninfected sample is hybridized as the reference.
Project description:In this study, we describe a viral suppressor of RNA silencing encoded by the prototype flavivirus, yellow fever virus (YFV). We show that the YFV capsid protein inhibits RNA silencing in the mosquito Aedes aegypti by interfering with Dicer. These results suggest a molecular arms race between vector and pathogen underlies the continued existence of flaviviruses in nature.