Project description:Whole transcriptome analysis of two genetically distinctinct inbred chicken lines during NDV infection and heat stress. Background: Newcastle disease virus, in its most pathogenic form, threatens the livelihood of rural poultry farmers where there is a limited infrastructure and service for vaccinations to prevent outbreaks of the virus. Previously reported studies on the host response to Newcastle disease in chickens have not examined the disease under abiotic stressors, such as heat, which commonly experienced by chickens in regions such as Africa. The objective of this study was to elucidate the underlying biological mechanisms that contribute to disease resistance in chickens to the Newcastle disease virus while under the effects of heat stress. Results: Differential gene expression analysis identified genes differentially expressed between treated and non-treated birds across three time points (2, 6, and 10 days post-infection) in Fayoumi and Leghorn birds. Across the three time points, Fayoumi had very few genes differentially expressed between treated and non-treated groups at 2 and 6 days post-infection. However, 202 genes were differentially expressed at 10 days post-infection. Alternatively, Leghorn had very few genes differentially expressed at 2 and 10 days post-infection but had 167 differentially expressed genes at 6 days post-infection. Very few differentially expressed genes were shared between the two genetic lines, and pathway analysis found unique signaling pathways specific to each genetic line. Conclusions: The findings in this study confirmed our hypothesis that the Fayoumi line was more resistant to Newcastle disease virus infection compared to the Leghorn line. Fayoumi had significantly lower viral load, higher viral clearance, higher anti-NDV antibody levels, and fewer viral transcripts detected compared to Leghorns. Fayoumis activated immune related pathways including SAPK/JNK and p38 MAPK signaling pathways at earlier time points, while Leghorn would activate these same pathways at a later time. Further analysis revealed activation of the GP6 signaling pathway that may be responsible for the susceptible Leghorn response. Interaction analysis demonstrated substantial differences in response patterns between the two genetic lines that was not observed from the within line contrasts. This study has provided novel insights into the transcriptome response of the Harderian gland tissue during Newcastle disease virus infection while under heat stress utilizing a unique resistant and susceptible model.
Project description:The program is to utilize the cutting-edge genomic technologies enhance innate resistance to Newcastle disease in chickens adapted to the African environment, thereby increasing food security, nutrition, and livelihoods in Africa -- key goals of the United States Agency of International Development Feed the Future Program.
Project description:Background and aims Climate warming has become an indisputable fact, and wheat is among the most heat-sensitive cereal crops. Heat stress during grain filling threatens global wheat production and food security. Here, we analyzed the physiological and proteomic changes by delayed sowing on the photosynthetic capacity of winter wheat leaves under heat stress. Our aim is to provide a new cultivation way for the heat stress resistance in wheat. Methods Through 2 years field experiment and an open warming simulation system, we compared the changes in wheat grain weight, yield, photosynthetic rate, and chlorophyll fluorescence parameters under heat stress at late grain–filling stage during normal sowing and delayed sowing. At the same time, based on the iTRAQ proteomics, we compared the changes of differentially expressed proteins (DEPs) during the two sowing periods under high temperature stress.
Project description:Transcriptional profiling of the jejunum mucosa with 1.5 fold-change reporter genes in comparing control black-boned chickens under normal temperature (NT) conditon with heat-stress treated black-boned chickens under high temperature (HT) condition. Goal was to determine the differentially expressed genes (DEGs) in co-family black-boned chickens exposure to heat stress based on global chicken gene expression.
Project description:We have used RNA-seq to examine mRNAs from chicken spleen and bursa of Fabricius of three different condition (non-immunized and non-heat-stressed (24 ± 1℃ for 3 h), immunized (Newcastle disease vaccine) and non-heat-stressed, and immunized and heat-stressed (36 ± 1℃ for 3 h)). To clarify how chicken immune systems responded to heat stress with and without immunization.
Project description:Global warming seriously threats world food supply. However, very few approaches have succeeded in genetically enhancing crop heat tolerance without growth penalty. To reveal the underlying molecular mechanism of Erecta action in response to thermal stress, we performed transcriptional profiling of Col-0 and mutant er-105 plants with or without 40℃ heat treatment on a global scale using the Affymetrix Arabidopsis ATH1 GeneChip.
Project description:To realize the gene expression in response to acute heat stress in chicken testis, we have employed whole genome microarray expression profiling as we have employed whole genome microarray expression profiling as a tool to identify genes response to acute heat stress. Male B strain Taiwan country chickens were subjected to acute heat stress (38℃) for 4 h, and then exposed to 25℃, with testes collected 0, 2, and 6 h after the cessation of heat stress, using non heat-stressed roosters as a control group (n = 3 roosters per group). Based on a chicken 44K oligo microarray, 163 genes significantly differed in the testes of the heat-stressed chickens from those of the control chickens. The mRNA expressions of upregulated genes, including HSP25, HSP90AA1, HSPA2, and LPAR2, and downregulated genes, including CDH5, CTNNA3, EHF, CIRBP, SLA, and NTF3, were confirmed through quantitative real-time polymerase chain reaction (qRT-PCR).
Project description:Environmental stresses such as drought, heat and salinity limit plant development and agricultural productivity. While individual stresses have been studied extensively, much less is known about the molecular interaction of responses to multiple stresses. To address this problem, we investigated molecular responses of Arabidopsis thaliana to single, double, and triple combinations of salt, osmotic, and heat stresses. A metabolite profiling analysis indicated the production of specific compatible solutes depending on the nature of the stress applied. We found that in combination with other stresses, heat has a dominant effect on global gene expression and metabolites level patterns. Treatments that include heat stress lead to strongly reduced transcription of genes coding for abundant photosynthetic proteins and proteins regulating the cell life cycle, while genes involved in protein degradation are upregulated. Under combined stress conditions, the plants shifted their metabolism to a survival state characterized by low productivity. Our work provides molecular evidence for the dangers for plant productivity and future world food security posed by heat waves resulting from global warming. We highlight candidate genes, many of which are functionally uncharacterized, for engineering plant abiotic stress tolerance.
Project description:Transcriptional profiling of the jejunum mucosa with 1.5 fold-change reporter genes in comparing control black-boned chickens under normal temperature (NT) conditon with heat-stress treated black-boned chickens under high temperature (HT) condition. Goal was to determine the differentially expressed genes (DEGs) in co-family black-boned chickens exposure to heat stress based on global chicken gene expression. Two-condition experiment, HT vs. NT Treatment. Biological replicates: 3 control replicates, 3 heat stressed replicates.
Project description:Abstract: Drought is the primary cause of global agricultural losses and represents a major threat to worldwide food security. Currently, plant biotechnology stands out as the most promising strategy to increase crop growth in rain-fed conditions. The main mechanisms underlying drought resistance have been uncovered by studies of plant physiology and by engineering crops with drought-resistant genes. However, plants with enhanced drought resistance usually display lower levels of growth, highlighting the need to search for novel strategies capable of uncoupling drought resistance from growth. Here, we show that the brassinosteroid family of receptors, in addition to promoting growth, guides phenotypic adaptation to a great variety of drought stress traits analyzed herein. Whilst mutations in the ubiquitously localized BRI1 receptor pathway show an enhanced drought resistance at the expense of plant growth, we found that vascular-enriched BRL3 receptors confer drought tolerance without penalizing overall growth. Systematic analyses reveal that upon drought stress the BRL3 receptor pathway triggers the synthesis and mobilization of osmoprotectant metabolites, mainly proline and sugars. This preferentially occurs in the vascular tissues of the roots and favors overall plant growth. Altogether, our results uncover a new role for the spatial control of BR signaling in drought tolerance, and offer a novel strategy to address food security issues in an increasingly water-limited climate.