Project description:Gene expression analysis of chrysanthemum infected with three different viruses including Cucumber mosaic virus, Tomato spotted wilt virus, and Potato virus X have been performed using the chrysanthemum 135K microarray.
Project description:Transcription profiling of roots and shoots of tomato plants as a result of systemic infection with the tospovirus Tomato Spotted Wilt Virus (TSWV).
Project description:Transcriptional changes triggered by the systemic infection of the tospovirus Tomato Spotted Wilt Virus (TSWV) in roots and shoots of tomato plants (Solanum lycopersicum) mycorrhized by Glomus mosseae
Project description:Gene expression analysis of chrysanthemum infected with three different viruses including Cucumber mosaic virus, Tomato spotted wilt virus, and Potato virus X have been performed using the chrysanthemum 135K microarray. Mock and each virus infected chrysanthemum plants were subjected for microarray analysis.
Project description:Tomato spotted wilt virus (TSWV), transmitted by small insects known as thrips, is one of the major threats to tomato productivity across the globe. In addition to tomato, this virus infects more than 1000 other plants belonging to 85 families and is a cause of serious concern. Very little, however, is known about the molecular mechanim of TSWV induced signaling in plants. Here, we used a TMT-based quantitative proteome analysis to investigate the protein profiles of tomato leaves of two cultivars (cv 2621and 2689; susceptible and resistant respectively to TSWV infection) following TSWV inoculation. This approach resulted in the identification of 5112 proteins of which 1022 showed significant changes in response to TSWV. While the proteome of resistant cultivar majorly remain unaltered, proteome of susceptible cultivar showed distint differences following TSWV infection. TSWV modulated proteins in tomato included those with functions previously implicated in plant defence incuding secondary metabolism, ROS detoxification, MAP kinase signaling, Calcium signaling and jasmonate biosynthesis, among others. Taken together, these results provide new insights into the TSWV induced signaling in tomato leaves and may be useful in future to manage this deadly disease of plants.
2020-05-06 | PXD017250 | Pride
Project description:Evolutionary dynamics of tomato spotted wilt virus within and between hosts.
| PRJNA627851 | ENA
Project description:Frankliniella occidentalis (western flower thrips) larval gut response to tomato spotted wilt virus
Project description:Viruses are obligate intracellular pathogens that depend on host factors to complete their infection cycle. Very little is known of which plant factors are required for successful Tomato spotted wilt orthotospovirus (TSWV) infection. The viral ribonucleoprotein (RNP) fraction from TSWV infected Nicotiana benthamiana plants was purified and its protein composition was analysed by proteomics by mass spectrometry to identify host proteins that co-purify with viral RNPs. Related, we expressed a TSWV replicon system in a non-host system, Bakers’ yeast (Saccharomyces cerevisiae), and purified as well the RNP fraction from yeast. Comparative proteomics was used to find common enriched proteins observed in both yeast and plant RNP fractions.