Project description:The exchange of mobile genomic islands (MGIs) between microorganisms is often mediated by phages. As a consequence, not only phage genes are transferred, but also genes that have no particular function in the phage's lysogenic cycle. If they provide benefits to the phage's host, such genes are referred to as ‘morons’. The present study was aimed at characterizing a set of Enterobacter cloacae, Klebsiella pneumoniae and Escherichia coli isolates with exceptional antibiotic resistance phenotypes from patients in a neonatal ward. Unexpectedly, these analyses unveiled the existence of a novel family of closely related MGIs in Enterobacteriaceae. The respective MGI from E. cloacae was named MIR17-GI. Importantly, our observations show that MIR17-GI-like MGIs harbor genes associated with high-level resistance to cephalosporins. Further, we show that MIR17-GI-like islands are associated with integrated P4-like prophages. This implicates phages in the spread of cephalosporin resistance amongst Enterobacteriaceae. The discovery of a novel family of MGIs spreading ‘cephalosporinase morons’ is of high clinical relevance, because high-level cephalosporin resistance has serious implications for the treatment of patients with Enterobacteriaceal infections.
Project description:It is well understood that many bacteria have evolved to survive catastrophic events using a variety of mechanisms, which include expression of stress response genes, quiescence, necrotrophy, and metabolic advantages obtained through mutation. However, the dynamics of individuals leveraging these abilities to gain a competitive advantage in an ecologically complex setting remain unstudied. In this study, we observed the saliva microbiome throughout the ecological perturbation of long-term starvation, allowing only the species best equipped to access and use the limited resources to survive. During the first several days, the community underwent a death phase that resulted in a 50 to 100 fold reduction in the number of viable cells. Interestingly, after this death phase, only three species, Klebsiella pneumoniae, Klebsiella oxytoca, and Providencia alcalifaciens, all members of the family Enterobacteriaceae, appeared to be transcriptionally active and recoverable. Klebsiella are significant human pathogens, frequently resistant to multiple antibiotics, and recently, ectopic colonization of the gut by oral Klebsiella was documented to induce dysbiosis and inflammation. MetaOmics analyses provided several leads for further investigation regarding the ecological success of the Enterobacteriaceae. The isolates accumulated single nucleotide polymorphisms in known growth advantage in stationary phase alleles and produced natural products closely resembling antimicrobial cyclic depsipeptides. The results presented in this study suggest that pathogenic Enterobacteriaceae persist much longer than their more benign neighbors in the salivary microbiome when faced with starvation. This is particularly significant, given that hospital surfaces contaminated with oral fluids, especially sinks and drains, are well established sources of outbreaks of drug resistant Enterobacteriaceae.
Project description:BackgroundIMP-producing Klebsiella spp. (IMPKsp) strains have spread globally, including in China. Currently, the prevalence and genomic characterization of IMPKsp is largely unknown nationwide. Here we aimed to provide a general overview of the phenotypic and genomic characteristics of IMPKsp strains.Methods61 IMPKsp strains were obtained from 13 provinces in China during 2016-2021. All strains were tested for their susceptibility to antimicrobial agents by the microdilution broth method and sequenced with Illumina next-generation sequencing. We performed conjugation experiments on thirteen representative strains which were also sequenced by Oxford nanopore sequencing technology to characterize blaIMP-encoding plasmids.ResultsWe find that all IMPKsp strains display multidrug-resistant (MDR) phenotypes. All strains belong to 27 different STs. ST307 emerges as a principal IMP-producing sublineage. blaIMP-4 is found to be the major isoform, followed by blaIMP-38. Seven incompatibility types of blaIMP-encoding plasmids are identified, including IncHI5 (32/61, 52.5%), IncN-IncR (10/61, 16.4%), IncFIB(K)-HI1B (7/61, 11.5%), IncN (5/61, 8.2%), IncN-IncFII (2/61, 3.3%), IncFII (1/61, 1.6%) and IncP (1/61, 1.6%). The strains carrying IncHI5 and IncN plasmids belong to diverse ST types, indicating that these two plasmids may play an important role in the transmission of blaIMP genes among Klebsiella spp. strains.ConclusionsOur results highlight that multi-clonal transmission, multiple genetic environments and plasmid types play a major role in the dissemination process of blaIMP genes among Klebsiella spp. IncHI5 type plasmids have the potential to be the main vectors mediating the spread of the blaIMP genes in Klebsiella spp.
Project description:Liao2011 - Genome-scale metabolic
reconstruction of Klebsiella pneumoniae (iYL1228)
This model is described in the article:
An experimentally validated
genome-scale metabolic reconstruction of Klebsiella pneumoniae
MGH 78578, iYL1228.
Liao YC, Huang TW, Chen FC,
Charusanti P, Hong JS, Chang HY, Tsai SF, Palsson BO, Hsiung
CA.
J. Bacteriol. 2011 Apr; 193(7):
1710-1717
Abstract:
Klebsiella pneumoniae is a Gram-negative bacterium of the
family Enterobacteriaceae that possesses diverse metabolic
capabilities: many strains are leading causes of
hospital-acquired infections that are often refractory to
multiple antibiotics, yet other strains are metabolically
engineered and used for production of commercially valuable
chemicals. To study its metabolism, we constructed a
genome-scale metabolic model (iYL1228) for strain MGH 78578,
experimentally determined its biomass composition,
experimentally determined its ability to grow on a broad range
of carbon, nitrogen, phosphorus and sulfur sources, and
assessed the ability of the model to accurately simulate growth
versus no growth on these substrates. The model contains 1,228
genes encoding 1,188 enzymes that catalyze 1,970 reactions and
accurately simulates growth on 84% of the substrates tested.
Furthermore, quantitative comparison of growth rates between
the model and experimental data for nine of the substrates also
showed good agreement. The genome-scale metabolic
reconstruction for K. pneumoniae presented here thus provides
an experimentally validated in silico platform for further
studies of this important industrial and biomedical
organism.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180054.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.