Project description:The study critically evaluate the results of 16S targeted amplicon sequencing performed on the total DNA collected from healthy donors’ blood samples in the light of specific negative controls.
Project description:The relationship between the microbial changes with clinical-pathological outcomes are still far from being conclusive. Herein, we investigate the ability of metagenomics (MG) and metaproteomics (MP) saliva data in distinguishing C, L0 and L1 patients. For that, we combined two strategies using MG analysis using 16S rDNA sequencing of saliva cells, and MP analysis using liquid chromatography tandem mass spectrometry of saliva supernatant and cells.
Project description:In this paper, we first report that EC smoking significantly increases the odds of gingival inflammation. Then, we seek to identify and explain the mechanism that underlies the relationship between EC smoking and gingival inflammation via the oral microbiome. We performed mediation analyses to assess if EC smoking affects the oral microbiome, which in turn affects gingival inflammation. For this, we collected saliva and subgingival samples from EC users and non-users and profiled their microbial compositions via 16S rRNA amplicon sequencing. We then performed α-diversity, β-diversity, and taxonomic differential analyses to survey the disparity in microbial composition between EC users and non-users. We found significant increases in α-diversity in EC users and disparities in β-diversity between EC users and non-users.
Project description:Total DNA was extracted from saliva and stool of the patients, amplified to collect amplicons of variable V3–V4 regions of the bacterial 16s rRNA gene and sequenced with MiSeq (2x300bp) Illumina platform.
Project description:We report the use of high-throughput sequencing technology to detect the microbial composition and abundance of mice grastic contents before and after Helicobacter pylori infection or Lactobacillus paracasei ZFM54 pretreatment/treatment. The genomic DNA was obtained by the QIAamp PowerFecal DNA Kit. Then, the DNA samples were sent to BGI Genomics Co., Ltd. (Shenzhen, China) for V3-V4 region of the 16S rRNA gene high-throughput sequencing with an Illumina MiSeq platform. DNA samples were sequenced using primers 338F (forward primer sequence ACTCCTACGGGAGGCAGCAG)-806R (reverse primer sequence GGACTACHVGGGTWTCTAAT). The sequencing analyses were carried out using silva138/16s database as a reference for the assignation of Amplicon Sequence Variant (ASV) at 100% similarity.
Project description:Nitrate-reducing iron(II)-oxidizing (NDFO) bacteria are widespread in the environment contribute to nitrate removal and influence the fate of the greenhouse gases nitrous oxide and carbon dioxide. The autotrophic growth of nitrate-reducing iron(II)-oxidizing bacteria is rarely investigated and poorly understood. The most prominent model system for this type of studies is enrichment culture KS, which originates from a freshwater sediment in Bremen, Germany. A second NDFO culture, culture BP, was obtained with a sample taken in 2015 at the same pond and cultured in a similar way. To gain insights in the metabolism of nitrate reduction coupled to iron(II) oxidation under in the absence of organic carbon and oxygen limited conditions, we performed metagenomic, metatranscriptomic and metaproteomic analyses of culture BP. Raw sequencing data of 16S rRNA amplicon sequencing (V4 region with Illumina and near full-length with PacBio), shotgun metagenomics, metagenome assembly, raw sequencing data of shotgun metatranscriptomes (2 conditions, triplicates) can be found at SRA in https://www.ncbi.nlm.nih.gov/bioproject/PRJNA693457. This dataset contains proteomics data for 2 conditions in triplicates. Samples R23, R24, and R25 are grown in autotrophic conditions, samples R26, R27, and R28 in heterotrophic conditions.
Project description:In this study we developed metaproteomics based methods for quantifying taxonomic composition of microbiomes (microbial communities). We also compared metaproteomics based quantification to other quantification methods, namely metagenomics and 16S rRNA gene amplicon sequencing. The metagenomic and 16S rRNA data can be found in the European Nucleotide Archive (Study number: PRJEB19901). For the method development and comparison of the methods we analyzed three types of mock communities with all three methods. The communities contain between 28 to 32 species and strains of bacteria, archaea, eukaryotes and bacteriophage. For each community type 4 biological replicate communities were generated. All four replicates were analyzed by 16S rRNA sequencing and metaproteomics. Three replicates of each community type were analyzed with metagenomics. The "C" type communities have same cell/phage particle number for all community members (C1 to C4). The "P" type communities have the same protein content for all community members (P1 to P4). The "U" (UNEVEN) type communities cover a large range of protein amounts and cell numbers (U1 to U4). We also generated proteomic data for four pure cultures to test the specificity of the protein inference method. This data is also included in this submission.
2017-05-12 | PXD006118 | Pride
Project description:16S rRNA Amplicon Sequencing of Human Saliva
| PRJNA1143177 | ENA
Project description:saliva 16S rRNA sequencing data
Project description:Sensitive models of climate change impacts would require a better integration of multi-omics approaches that connect the abundance and activity of microbial populations. Here, we show that climate is a fundamental driver of the protein abundance of microbial populations (metaproteomics), yet not their genomic abundance (16S rRNA gene amplicon sequencing), supporting the hypothesis that metabolic activity may be more closely linked to climate than community composition.